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1. Introduction

A Landau model describes the quantum mechanics of an electrically charged particle con-

fined to a surface through which passes a constant uniform magnetic flux. In Landau’s

original paper the surface was planar, but this may be viewed as the R → ∞ limit of a

model in which the surface is a 2-sphere of radius R . In the latter case, the magnetic

field can be interpreted as the field due to a magnetic monopole at the centre of a ball in

E
3 with the 2-sphere as its surface. Dirac’s quantization condition then applies, so that

the particle’s electric charge is an integer multiple of a minimal allowed charge. We call

this integer 2N , for reasons to be explained later, and we assume it to be positive. The

planar Landau model is then found by taking the limit in which R→ ∞ and N → ∞ with

N/R2 ≡ κ kept fixed.

In this paper we continue a study of super-Landau models [1 – 4], defined either as

Landau models on homogeneous superspaces that have the 2-sphere as ‘body’, or as planar

limits of such models. The spherical super-Landau models to be considered are those for

which the superspace has a transitive action of the supergroup SU(2|1) , which allows two

possibilities. The simplest such superspace is the Riemann supersphere:

SU(2|1)/U(1|1) ∼= CP
(1|1) [Supersphere] . (1.1)

As for the standard spherical Landau model, there is a family of superspherical Landau

models indexed by a positive integer 2N . In the planar limit one gets the superplane

Landau models, indexed by the real number κ , although qualitative properties do not

depend on this parameter so there is essentially only one ‘superplane’ model,1 which we

have investigated in detail in two previous papers [3, 4]. Excluding this case, we may set

to unity the 2-sphere radius R , without loss of generality.

The generic ‘spherical’ super-Landau model with transitive action of SU(2|1) is a ‘su-

perflag’ Landau model, for which the homogeneous superspace is

SU(2|1)/[U(1) × U(1)] [Superflag] . (1.2)

Geometrically, the superflag is defined via the nested sequence of superspaces

C
(0|1) ⊂ C

(1|1) ⊂ C
(2|1) . (1.3)

Each such sequence is a point on the superflag. The supersphere is then found as the pro-

jection in which one ‘forgets’ the C
(0|1) superspace. If instead one ‘forgets’ the intermediate

C
(1|1) superspace then one gets the Grassmann odd manifold SU(2|1)/U(2), for which the

lowest Landau level limit was considered in [9]; we shall not consider this model in detail

here because it is not a ‘spherical’ super-Landau model. More about the geometry of flag

supermanifolds may be found in [10].

1Here we should point out that this statement applies to the supersphere as defined above; an alternative

definition yields the alternative ‘supersphere’ and ‘superplane’ Landau models studied in [5 – 7] (see [8] for

a recent review).
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A class of superflag models, indexed both by the positive integer 2N and by another

continuous parameter M , was constructed in [2]. Although there is an additional complex

anti-commuting coordinate ξ , as compared to the supersphere, there is also more freedom

in the choice of ‘kinetic’ terms. In fact, there are now three separate possible SU(2|1) -

invariant kinetic terms that lead to second time-derivatives in the equations of motion. One

linear combination yields the Kähler sigma-model on the superflag, but the combination

chosen in [2] leads to a degenerate ‘metric’ for which ξ has no kinetic term. The parameter

M is the coefficient of a ‘Wess-Zumino’ term that involves the time-derivative of ξ , so

the equation of motion for ξ is generally a first order differential equation, but it becomes

algebraic for M = 0. Provided that the classical energy is non-zero, this allows ξ to be

eliminated for M = 0 , and the resulting action is precisely that of the superspherical

Landau model. In the planar limit, the subtlety involving zero classical energy has no

effect in the quantum theory and the M = 0 planar superflag model is equivalent to the

superplane model [3, 4]. Here we show that a similar equivalence holds for the spherical

Landau models but involving a shift of 2N by one unit: the M = 0 superflag model with

charge 2N ′ = 2N − 1 is equivalent to the superspherical model with charge 2N .

Although spherical Landau models involve non-linearities absent from the planar mod-

els, they are conceptually simpler in the sense that each Landau level carries a finite-

dimensional representation of the isometry group of the surface on which the particle is

moving. This includes the SU(2) isometry group of the 2-sphere in all the above cases,

but the SU(2) representations must combine into representations of SU(2|1) in the super-

Landau models. It was shown in [1] that the lowest Landau level (LLL) of the superspherical

model consists of states that span a degenerate (atypical) ‘superspin’ N representation of

SU(2|1) ; this decomposes into the direct sum of a spin (N−1/2) and a spin N representa-

tion of SU(2) ; this is one way to see why 2N must be an integer. A satisfactory definition

of the superspherical Landau model beyond the LLL is complicated by the fact that each

higher level has states of negative norm (ghosts) in the natural superspace metric [2], so

the naturally defined quantum theory is not unitary. The problem is less severe for the

superflag models with large positive M because the first [2M ] + 1 levels are then ghost

free [2] ([2M ] is the integer part of 2M). However, there are still ghosts in the higher levels,

and in all levels if M < 0 .

In a previous paper, it was shown how this difficulty can be overcome in the planar

limit by an alternative choice of Hilbert space norm [4]. In the planar limit, the SU(2|1)
symmetry algebra gets contracted to the superalgebra ISU(1|1) , and it turns out that there

are two possible ISU(1|1) invariant Hilbert space norms, each associated to a choice of ‘met-

ric’ operator G . The trivial choice G = 1 yields the indefinite Hilbert space norm but there

is a second non-trivial possibility, which yields a positive definite norm for M ≤ 0 , and

one can define a unitary theory for M > 0 by a ‘dynamically chosen’ mixture of the two

invariant norms. The changed norm leads to a change in the operation of hermitian conju-

gation with the result that the new hermitian conjugates of the ‘odd’ charges of ISU(1|1)
are shifted by odd operators that are ‘new’ symmetries of the model. Remarkably, these

are just worldline supersymmetry charges, so the unitary ‘superplane’ Landau model (cor-

responding to the choice M = 0) has a hidden worldline supersymmetry (as found earlier

– 3 –
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in [7] for an alternative superplane Landau model that is apparently quantum equivalent

to our superplane Landau model). The planar superflag model also has this worldline

symmetry for M < 0 , but it is spontaneously broken [4]. A superfield formulation of the

superplane model, in which the worldline N = 2 supersymmetry of the latter is manifest,

was given in [11].

The main purpose of this paper is to present results of a similar analysis of the spherical

super-Landau models. In particular we show that there are two possible SU(2|1) invariant

norms on the Hilbert space of the superflag Landau model, each associated to a metric

operator G. The ‘trivial’ choice G = 1 yields the indefinite Hilbert space norm but the

other choice of G yields a positive Hilbert space norm provided that −2N ′ − 1 < M ≤
0 , with zero norm states at M = 0 ; for other values of M one needs a ‘dynamical’

combination of the two norms. We solve the model in the sense that we determine the

spectrum, degeneracies, and SU(2|1) representations at each level. We do the same for

the supersphere; in particular, we confirm the earlier result of [1] that the LLL furnishes

an irreducible superspin N representation of SU(2|1) . The results agree with the M = 0

superflag after taking into account zero-norm states of the latter and the shift of 2N

mentioned above, and this establishes the equivalence of these two models. For the cases

in which −2N ′−1 < M ≤ 0 we also investigate the nature of the ‘hidden’ symmetries that

are revealed by the process described above for the planar models. For the supersphere,

i.e. M = 0 , we again find additional ‘supersymmetries’ but they do not form a closed

algebra with the Hamiltonian, except in the planar limit; it appears likely that closure

requires an infinite set of ‘new’ charges. Thus, the supersphere Landau model does not

have a conventional worldline supersymmetry, in contrast to the superplane model. The

situation for the −2N ′ − 1 < M ≤ 0 superflag models is rather different, and surprising.

We show that the manifest SU(2|1) symmetry of these models is enhanced to SU(2|2),
with the central charge being a linear function of the Landau level number.

1.1 Organization

We will start by formulating the classical superspherical Landau model. The quantum

Hamiltonian is not obviously factorizable, as it is for the ‘bosonic’ model, but we never-

theless find an infinite set of eigenstates using covariance arguments.2 The next step is

to compute the norm of the eigenvectors. It turns out that this norm can be expressed

through two analytic superfieds and that its component form is identical to a particular

case of a norm considered for the superflag Landau model in [2]. In this way it is recognized

that the redefinition of the norm needed for a unitary superspherical Landau model is a

particular case of the redefinition needed for the superflag Landau model.

We then turn to the superflag model, reviewing results of [2]. There is an additional

anti-commuting variable in comparison to the superspherical model, and this leads to ‘ex-

tended’ superfields upon quantization. For all Landau levels, the eigenvectors are expressed

2Our method, which follows the spirit of [12] and [13], can also be applied to other models and we

reproduce in an appendix the results of Karabali and Nair [14] for the CP
n models, with the advantage

that the eigenvectors are found explicitly without using knowledge of the Wigner functions for SU(n + 1).
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in terms of the components of a single extended analytic superfield. We determine the ac-

tion of the SU(2|1) charges in this analytic subspace, and diagonalize the natural superspace

metric within it. This allows us to construct the metric operator that ensures a positive

definite norm. As explained above, this can lead to the appearance of new ‘hidden’ sym-

metries, and we show that the manifest SU(2|1) symmetry is enhanced to SU (2|2) when

−2N ′ − 1 < M < 0 .

Finally, we discuss the relationships between the supersphere and superflag models

using the geometric language of non-linear realizations and covariant derivatives on the

corresponding supercosets [2]. In particular, we show that the superflag Hamiltonian of

ref. [2] and that of the supersphere considered here are two particular cases of a more

general second-order covariant differential operator defined on the full superflag manifold

SU(2|1)/[U(1) × U(1)] , and that each is recovered after imposing appropriate covariant

conditions on the superfield wave functions. The covariant approach makes explicit the

quantum equivalence of the 2N ′ superflag model at M = 0 with the 2N supersphere model

when 2N ′ = 2N − 1 .

The main conclusions of this paper, taken together with our earlier work on super-

Landau models, is summarized in the final section.

2. The superspherical Landau model

We begin with a presentation of some facts about SU(2|1) and the supersphere. We then

construct the classical superspherical Landau model, solve the quantum model by determin-

ing the energy eigenstates and their eigenvalues. We conclude this section with a discussion

of the Hilbert space norm, noting the problem of ghosts, which will be resolved following

our results for the more general superflag model.

2.1 SU(2|1)
The Lie superalgebra su(2|1) is spanned by even charges (F, J3, J±), satisfying the commu-

tation relations of U(2), and a U(2) doublet of odd charges (Π, Q); we write the complex

conjugate charges as (Π†, Q†) since we plan to realize this algebra in terms of operators for

which (Π†, Q†) are the hermitian conjugates of (Π, Q). The non-zero commutators of the

even charges are

[J+, J−] = 2J3 , [J3, J±] = ±J± . (2.1)

The non-zero commutators of the odd generators with the even generators are

[J+,Π] = iQ , [J−, Q] = −iΠ ,

[J3,Π] = −1

2
Π , [J3, Q] =

1

2
Q ,

[F,Π] = −1

2
Π , [F,Q] = −1

2
Q (2.2)

and
[
J−,Π

†
]

= iQ† ,
[
J+, Q

†
]

= −iΠ† ,

– 5 –



J
H
E
P
1
0
(
2
0
0
8
)
0
6
9

[
J3,Π

†
]

=
1

2
Π† ,

[
J3, Q

†
]

= −1

2
Q† ,

[
F,Π†

]
=

1

2
Π† ,

[
F,Q†

]
=

1

2
Q† , (2.3)

which show that (Π, Q) and (Π†, Q†) are SU(2) doublets of charge −1
2 and 1

2 , respectively.

Finally, the non-zero anti-commutators of the odd charges are

{
Π,Π†

}
= −J3 + F ,

{
Q,Q†

}
= J3 + F ,

{
Π, Q†

}
= iJ− ,

{
Π†, Q

}
= −iJ+ . (2.4)

As su(2|1) is a rank two superalgebra, it has a quadratic and a cubic Casimir. The

quadratic Casimir is

C2 =
1

2
{J+, J−} + J2

3 − F 2 − 1

2

[
Π,Π†

]
− 1

2

[
Q,Q†

]
, (2.5)

The cubic Casimir operator is

C3 =
i

2
J+

[
Q†,Π

]
− i

2

[
Π†, Q

]
J− +

1

2
J3

([
Q,Q†

]
−
[
Π,Π†

])

−1

2
F
([

Π,Π†
]

+
[
Q,Q†

])
+ 2C2F − Π†Π −QQ†. (2.6)

2.2 The supersphere

The Riemann supersphere CP
(1|1) ∼= SU(2|1)/U(1|1) is a complex supermanifold with com-

plex coordinates

ZA =
(
Z0, Z1

)
= (z, ζ) , Z̄B̄ =

(
Z̄0, Z̄1

)
=
(
z̄, ζ̄
)
, (2.7)

where z is a complex coordinate of the Riemann sphere, with complex conjugate z̄, and

ζ is its anti-commuting partner, with complex conjugate ζ̄. The SU(2|1) transformations

of these complex coordinates are analytic and are generated by the following differential

operators

F =
1

2
ζ∂ζ , J3 = z∂z +

1

2
ζ∂ζ ,

J− = −i∂z , J+ = −i
(
z2∂z + zζ∂ζ

)
,

Π = ∂ζ , Π† = −ζz∂z ,

Q = z∂ζ , Q† = ζ∂z . (2.8)

The notation suggests that (Π†, Q†) may be interpreted as hermitian conjugates of (Π, Q),

and this is a correct interpretation in the context of the Hilbert space norm for the super-

spherical Landau model that we will discuss below.

The infinitesimal SU(2|1) transformations of the coordinates are found from

δZA = i
[
λJ3 + µF + εJ− + ε̄J+ − iǫ1Π − iǭ1Π

† + iǫ2Q+ iǭ2Q
† , ZA

]
, (2.9)

– 6 –
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where λ and µ are real, ε is complex with complex conjugate ε̄, and (ǫ1, ǫ2) are complex

anti-commuting parameters with complex conjugates (ǭ1, ǭ2). One finds that

δz = iλz + ε+ ε̄z2 − (ǭ2 + zǭ1) ζ ,

δζ =
i

2
(λ+ µ) ζ + ǫ1 − ǫ2z + ε̄z ζ . (2.10)

The complex conjugate expressions give the infinitesimal SU(2|1) transformations of (z̄, ζ̄).

The Riemann supersphere is not only a complex supermanifold but also a Kähler

supermanifold, with Kähler 2-form

F = 2i dZA ∧ dZ̄B̄ ∂B̄∂A K , (2.11)

where

K = log
(
1 + zz̄ + ζζ̄

)
(2.12)

is the Kähler potential, which is real because the usual convention for complex conjugation

of products of anti-commuting variables implies that (∂ζ)
∗ = −∂ζ̄ , and hence that

(∂B̄∂AK)∗ = (−1)a+b (∂B̄∂AK) . (2.13)

Here a is the Grassmann parity associated with the A or Ā index; i.e. a = 0 for A = 0 and

Ā = 0, and a = 1 for A = 1 and Ā = 1 (to avoid ambiguities with this simplified notation,

one must arrange for all barred indices to have letters that differ from those of unbarred

indices, but this restriction is easily accommodated).

The Kähler 2-form may be written locally as F = dA, where

A = −i
(
dZA∂A − dZ̄B̄∂B̄

)
K ≡ dZAAA + dZ̄B̄AB̄ (2.14)

is the Kähler connection. The Kähler connection transforms like a U(1) gauge potential

under a Kähler gauge transformation K → K + f + f̄ for any analytic function f with

complex conjugate f̄ , so F is Kähler gauge invariant. This implies that it is also SU(2|1)
invariant because the SU(2|1) transformation of the Kähler potential is

δK = ε̄z + εz̄ + ǫ1ζ̄ − ǭ1ζ , (2.15)

which is a Kähler gauge transformation.

The Kähler metric of the Riemann supersphere is

dZAdZ̄B̄ gB̄A = dZAdZ̄B̄ ∂B̄∂AK . (2.16)

It is manifestly Kähler gauge invariant, and hence SU(2|1) invariant. Before proceeding

we record, for future use, the components of the metric and inverse metric. The metric

components are

gz̄z =
1 + ζζ̄

(
1 + zz̄ + ζζ̄

)2 , gz̄ζ = − zζ̄

(1 + zz̄)2
,

gζ̄z =
z̄ζ

(1 + zz̄)2
, gζ̄ζ =

1

1 + zz̄
. (2.17)

– 7 –
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The inverse metric components are

gzz̄ = (1 + zz̄)
(
1 + zz̄ + ζζ̄

)
, gzζ̄ = (1 + zz̄) zζ̄ ,

gζz̄ = − (1 + zz̄) z̄ζ , gζζ̄ = 1 + zz̄
(
1 − ζζ̄

)
. (2.18)

The metric gB̄A and its inverse gAB̄ are related by the conditions

gAB̄gB̄C = δA
C , gB̄C g

CĀ = δB̄
Ā . (2.19)

2.3 The model

The classical Lagrangian of the superspherical Landau model is

L = ŻA ˙̄ZB̄gB̄A +N
(
ŻAAA + ˙̄ZB̄AB̄

)
, (2.20)

where the overdot indicates differentiation with respect to an independent variable, which

we interpret as time. Observe that L is real as a consequence of (2.13). The SU(2|1)
variation of this Lagrangian is a total time derivative, for any real number N . As men-

tioned in the Introduction, the quantum theory requires 2N to be an integer, which can

be interpreted as the particle’s electric charge.

We will proceed directly to the Hamiltonian form of the Lagrangian,

L = ŻAPA + ˙̄ZB̄PB̄ − (PA −NAA) gAB̄ (PB̄ −NAB̄) , (2.21)

where the inverse metric is defined in (2.18), (2.19) and the conjugate momenta are

PA = (pz,−iπζ) , PB̄ =
(
pz̄,−iπζ̄

)
. (2.22)

Here, pz̄ is the complex conjugate of pz and πζ is the complex conjugate of πζ̄ ; the factors of

−i are needed for this to be the case as a consequence of the rule for complex conjugation

of products of anti-commuting variables, and this has the consequence that

(PA)∗ = (−1)a PĀ . (2.23)

Since the inverse metric behaves in the same way as the metric under complex conjugation,

one sees that the new Lagrangian, in Hamiltonian form, is real, and one may verify that

elimination of the momenta returns us to the Lagrangian (2.20). We may now read off the

classical Hamiltonian, which we rewrite as

Hclass = (−1)a(a+b) gAB̄ (PA −NAA) (PB̄ −NAB̄) . (2.24)

To quantize, we make the replacements

pz → −i∂z , pz̄ → −i∂z̄, πζ → ∂ζ , πζ̄ → ∂ζ̄ , (2.25)

which imply

PA → −i∂A , PB̄ → −i∂B̄ . (2.26)

– 8 –
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This yields the quantum Hamiltonian

H = − (−1)a(a+b) gAB̄∇(N)
A ∇(N)

B̄
, (2.27)

where

∇(N)
A = ∂A −N (∂AK) , ∇(N)

B̄
= ∂B̄ +N (∂B̄K) . (2.28)

These covariant derivatives have the super-commutator

∇(N)

B̄
∇(Ñ)

A − (−1)ab ∇(Ñ)
A ∇(N)

B̄
= −

(
N + Ñ

)
gB̄A , (2.29)

with all other super-commutators equal to zero. For further use, we present here the

explicit expressions for ∇(N)
A ,∇(N)

B̄
:

∇(N)
z = ∂z −N

z̄

1 + zz̄ + ζζ̄
, ∇(N)

z̄ = ∂z̄ +N
z

1 + zz̄ + ζζ̄
,

∇(N)
ζ = ∂ζ −N

ζ̄

1 + zz̄ + ζζ̄
, ∇(N)

ζ̄
= ∂ζ̄ −N

ζ

1 + zz̄ + ζζ̄
. (2.30)

The SU(2|1) invariance of the model can be made manifest by writing the Hamiltonian

operator in terms of the Casimir operators. One finds that

H = C2 . (2.31)

2.4 The spectrum

The energy levels of the Landau model on the sphere may be found exactly, e.g. using a

factorization method. Although it is not clear to us how to apply this method to super-

sphere, the ‘supersymmetrization’ will obviously expand the SU(2) representation content

at each level to some representation of SU(2|1). Moreover, the lowest Landau level (LLL)

is known from earlier work [1]; in the present context, in which we have chosen an operator

ordering such that the ground state energy is zero, the LLL wave functions are components

of a superfield Ψ
(N)
0 , satisfying the analyticity constraint

∇(N)

B̄
Ψ

(N)
0 = 0 , (2.32)

and they carry an irreducible superspin N representation of SU(2|1) that decomposes into

the reducible (N−1/2)⊕N representation of SU(2). More generally, the energy eigenvalues

are

Eℓ = C2(ℓ) = ℓ (ℓ+ 2N) (2.33)

for non-negative integer ℓ, and the states in the ℓth Landau level, for ℓ > 0, have superfield

wave functions of the form

Ψ
(N)
ℓ = ∇(N+1)

A1
· · · ∇(N+2ℓ−1)

Aℓ
ΦAℓ...A1 , (2.34)

where the superfield ΦAℓ···A1 is totally graded symmetric in its ℓ indices and satisfies the

analyticity condition

∇(N)

B̄
ΦAℓ...A1 = 0 . (2.35)

– 9 –
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The graded symmetry means that Φ has only two independent components, which we may

take to be

Φz...z ≡ Φ
(+)
ℓ , Φz...ζ = Φ

(−)
ℓ . (2.36)

It follows that

Ψ
(N)
ℓ = Ψ

(N)
(+)ℓ + Ψ

(N)
(−)ℓ , (2.37)

where the two independent superfields Ψ
(N)
(±)ℓ are given by

Ψ
(N)
(+)ℓ = ∇(N+1)

z · · · ∇(N+2ℓ−1)
z Φ

(+)
ℓ (2.38)

and

Ψ
(N)
(−)ℓ =




ℓ∑

p=1

∇(N+1)
z . . .∇(N+2p−1)

ζ . . .∇(N+2ℓ−1)
z



Φ
(−)
ℓ . (2.39)

The LLL is exceptional in that only the (+) component is defined, and this is the ground

state wave function that we called Ψ
(N)
0 . In general, both of the Ψ(±) components will carry

an irreducible representation of SU(2|1), so only the LLL has a representation carried by a

single analytic superfield. We arrived at this result using insights gained from earlier stud-

ies of the planar limit, and by analogy with the CP
2 Landau model, which we discuss in

an appendix. Here we shall verify the result for the first two levels, which is the beginning

of a general inductive argument that we will not present but which should become clear.

At ℓ = 1 we have the superfield wave function

Ψ
(N)
1 = ∇(N+1)

C ΦC . (2.40)

After acting with H on this wave function, we move the ∇(N)

B̄
derivative to the right, where

it annihilates ΦC , but we pick up a super-commutator term, which we simplify using (2.29).

The result is

HΨ
(N)
1 = (2N + 1)gaB̄∇(N)

A gB̄CΦC . (2.41)

Now we use the identity

(−1)a(a+b) gAB̄∇(N)
A gB̄C = ∇(N+1)

C , (2.42)

which itself is a consequence of the identity

(−1)a(a+b) gAB̄ (∂A gB̄C) = −∂C K . (2.43)

The result is that Ψ
(N)
1 is an eigenfunction of H with energy eigenvalue (2N + 1).

At ℓ = 2 we have the superfield wave function

Ψ
(N)
2 = ∇(N+1)

D ∇(N+3)
C ΦCD . (2.44)

After acting with H on this superfield we again move ∇(N)

B̄
to the right, where it annihilates

the chiral superfield Φ, but we now pick up two super-commutator terms. Simplifying these

with (2.29), we find that

HΨ
(N)
(+)2 = (−1)a(a+b) (2N + 1) gAB̄∇(N)

A gB̄D∇(N+3)
C ΦCD

+ (−1)a(a+b)+bd (2N + 3) gAB̄∇(N)
A ∇(N+1)

D gB̄C ΦCD . (2.45)
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Now we use the identity

(−1)bc ∇(N+1)
(C gB̄D) ≡ gB̄(C∇

(N+3)
D) , (2.46)

where the brackets indicate graded symmetrization in the unbarred indices, to rewrite (2.45)

as

HΨ
(N)
(+)2 = (−1)a(a+b) (4N + 4) gAB̄∇(N)

A gB̄D∇(N+3)
C ΦCD . (2.47)

Then, using (2.42), we confirm that Ψ
(N)
2 is an eigenfunction of H with energy eigenvalue

(4N+4). No new identities are needed to repeat these steps at higher levels, and the result

for the ℓth level may be obtained by induction. In section 5 we shall reproduce the same

spectrum in an equivalent manifestly SU(2|1) covariant approach based on the standard

non-linear realizations definition of covariant derivatives on (super)cosets [2].

We conclude this section with a comment. Observe that in all the above formulas

the derivatives ∇(Ñ)
A ,∇(Ñ)

Ā
(Ñ = N,N + 1, . . .) are defined by eqs. (2.28), (2.30): their

variations under the odd part of the SU(2|1) coordinate transformations (2.10) (and the

conjugate ones)3 are

δ∇(Ñ)
z = (ǭ1ζ)∇(Ñ)

z + ǫ2∇(Ñ)
ζ ,

δ∇(Ñ)
z̄ = −(ǫ1ζ̄)∇(Ñ)

z̄ + ǭ2∇(Ñ)

ζ̄
,

δ∇(Ñ)
ζ = −(ǭ2 + zǭ1)∇(Ñ)

z − Ñ ǭ1 ,

δ∇(Ñ)

ζ̄
= (ǫ2 + z̄ǫ1)∇(Ñ)

z̄ − Ñǫ1 . (2.48)

Now observe that the variations of ∇(Ñ)
ζ and ∇(Ñ)

ζ̄
contain pieces ∼ Ñ . For the chiral-

ity conditions (2.32), (2.35) to be covariant, we are led to ascribe similar terms to the

transformations of the wave functions Ψ
(N)
0 and Φ

(±)
ℓ :

δΨ
(N)
0 = −N (ǫ1ζ̄ + ǭ1ζ)Ψ

(N)
0 ,

δΦ
(+)
ℓ = −N (ǫ1ζ̄ + ǭ1ζ)Φ

(+)
ℓ − ℓ(ǭ1ζ)Φ

(+)
ℓ + ℓ(ǭ2 + zǭ1)Φ

(−)
ℓ ,

δΦ
(−)
ℓ = −N (ǫ1ζ̄ + ǭ1ζ)Φ

(−)
ℓ − (ℓ− 1)(ǭ1ζ)Φ

(−)
ℓ + ǫ2 Φ

(+)
ℓ . (2.49)

As expected, the functions Ψ
(N)
(±)ℓ defined in (2.38) and (2.39) are not separately covariant

under the transformations (2.48) and (2.49), while the function Ψ
(N)
ℓ defined in (2.37) has

a simple transformation law, the same as that of Ψ
(N)
0 :

δΨ
(N)
ℓ = −N (ǫ1ζ̄ + ǭ1ζ)Ψ

(N)
ℓ . (2.50)

The weight factor ∼ N in (2.49)–(2.50) is imaginary, so |Ψ(N)
ℓ |2 =

(
Ψ

(N)
ℓ

)∗
Ψ

(N)
ℓ is a

genuine scalar.

3It suffices to consider only the transformations with odd parameters, as those with the even parameters

are contained in the closure of those with the odd parameters.
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2.5 Hilbert space norm

The Hilbert space has a natural SU(2|1)-invariant norm, defined as the superspace inte-

gral [1]

||Ψ||2 =

∫
dµ0 e

−K Ψ∗Ψ , (2.51)

where

dµ0 = dzdz̄ ∂ζ∂ζ̄ . (2.52)

For the ground state this norm reproduces the results in [1]. For the first excited state we

may simplify the norm by means of the integration by parts identity

∫
dµ0 e

−K
(
∇(N)

A ΦA
)∗

Θ ≡ − (−1)a

∫
dµ0 e

−K
(
ΦA
)∗ (∇(N−1)

Ā
Θ
)
, (2.53)

valid for arbitrary superfield Θ. Using also the super-commutator identity (2.29) and the

chirality condition on ΦC , we find that

||Ψ(N)
1 ||2 = (−1)a (2N + 1)

∫
dµ0 e

−K
(
ΦB
)∗

gB̄AΦA. (2.54)

Similar steps may be used to simplify the norm of Ψ
(N)
ℓ for ℓ > 1, but one now needs the

identity, analogous to (2.46),

(−1)bc ∇(N+2)

(Ā
gB̄)C ≡ g(ĀC∇

(N)

B̄)
, (2.55)

where the brackets again indicate graded symmetrization, but now in the barred indices.

The final result is

||Ψ(N)
ℓ ||2 = σℓ

(2N + 2ℓ− 1)!ℓ!

2N + ℓ− 1)!

∫
dµ0 e

−K
(
ΦB1...Bℓ

)∗
gB̄1A1

· · · gB̄ℓAℓ
ΦAℓ...A1 , (2.56)

where

σℓ = (−1)
P

ℓ

i
bi+

P
ℓ−1
i

aibi+1 . (2.57)

In terms of the two independent chiral superfields Φ
(±)
ℓ , we have4

||Ψ(N)
ℓ ||2 =

(2N + 2ℓ− 1)!ℓ!

(2N + ℓ− 1)!

∫
dµ0 e

−K

{(
Φ

(+)
ℓ

)∗
(gz̄z)

ℓ Φ
(+)
ℓ (2.58)

+ ℓ
(
Φ

(+)
ℓ

)∗
(gz̄z)

ℓ−1 gz̄ζ Φ
(−)
ℓ − ℓ

(
Φ

(−)
ℓ

)∗
(gz̄z)

ℓ−1 gζ̄z Φ
(+)
ℓ

+
(
Φ

(−)
ℓ

)∗ [
−ℓ (gz̄z)

ℓ−1 gζ̄ζ + ℓ (ℓ− 1) (gz̄z)
ℓ−2 gz̄ζgζ̄z

]
Φ

(−)
ℓ

}
.

To proceed, we solve the analyticity constraint (2.35) on the Φ
(±)
ℓ superfields by writing

Φ
(±)
ℓ = e−NKϕ

(±)
ℓ , (2.59)

4Although the ℓ = 0, 1 cases are special, and need to be considered separately, this result for ℓ ≥ 2 is

also correct for ℓ = 0, 1. In particular, all terms involving Φ(−) are absent for ℓ = 0, as expected.
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where ϕ
(±)
ℓ are unconstrained analytic superfields, with holomorphic SU(2|1) transforma-

tions that follow from (2.49):

δϕ
(+)
ℓ = −(2N + ℓ) (ǭ1ζ)ϕ

(+)
ℓ + ℓ (ǭ2 + zǭ1)ϕ

(−)
ℓ ,

δϕ
(−)
ℓ = −(2N + ℓ− 1) (ǭ1ζ)ϕ

(−)
ℓ + ǫ2 ϕ

(+)
ℓ . (2.60)

We may expand ϕ
(±)
ℓ in component fields as follows:

ϕ
(−)
ℓ = Aℓ + ζψℓ , ϕ

(+)
ℓ = χℓ + ζFℓ . (2.61)

If (as the notation suggests) the component functions (χ,ψ) are assumed to be Grassmann

odd, and the component functions (A,F ) are assumed to be Grassmann even, then Ψ will

be Grassmann odd. With the reverse Grassmann parity assignments to the component

functions, Ψ will have even Grassmann parity. In either of these two cases the ‘Hilbert’

space is actually a supervector space rather than a vector space. If, instead, all component

functions are assumed to be Grassmann even then Ψ will not have a definite Grassmann

parity but the Hilbert space will be a standard Hilbert space. There is no need here to

choose between these alternatives as long as we are careful not to perform any re-ordering

that would require us to specify one of them. Substituting for Φ
(±)
ℓ in (2.58) and performing

the Berezin integration, we arrive at the result

||Ψ(N)
ℓ ||2 =

(2N + 2ℓ− 1)!ℓ!

(2N + ℓ− 1)!

∫
dzdz̄

(1 + zz̄)2(N+ℓ)+1

[
− ℓ (2N + ℓ) |Aℓ|2 − ℓψ̄ℓψℓ

− ℓ
(
χ̄ℓ+z̄ψ̄ℓ

)
(χℓ+zψℓ)+

2 (N+ℓ)+1

1 + zz̄
χ̄ℓχℓ+|Fℓ|2

]
.(2.62)

If in this norm we substitute 2N = 2N ′ + 1, we get the norm found in [2] for the M = 0

superflag Landau model with charge 2N ′. We shall study the general superflag Landau

model in the following section, but this result already allows us to anticipate its equivalence

at M = 0 to the supersphere model, with a shift of the charge by one unit.

The above norm is SU(2|1) invariant, by construction, but not positive definite, so

the associated quantum theory is not unitary. However, there could be an alternative

SU(2|1) invariant norm that is positive-definite. Indeed there is, but we shall investigate

this in the context of the more general superflag model since we may then specialize to

M = 0 to get a unitary superspherical Landau model. Quite apart from the fact that

we will then have the main result in the context of a more general model, another reason

for this approach to the problem is that computations are easier for the superflag model.

This is because the additional anti-commuting variable of the classical theory becomes an

additional superspace coordinate in the quantum theory, and expansion in this coordinate

yields (±) pairs of superfields of the type that we have been considering. This simplification

also allows the superflag model to be solved exactly by a factorization trick.

– 13 –



J
H
E
P
1
0
(
2
0
0
8
)
0
6
9

3. The superflag Landau model

The superflag is the coset superspace SU(2|1)/[U(1)×U(1)]. It is a complex supermanifold

and we may choose

ZM = (z, ζ, ξ) , Z̄M = (z̄, ζ̄ , ξ̄) (3.1)

as the complex coordinates, where (z, ζ) are the complex coordinates used previously for the

supersphere, with SU(2|1) transformations (2.10), and ξ is a new complex anti-commuting

coordinate with SU(2|1) transformation

δξ = − i

2
(λ− µ) ξ + ǫ2 − ε̄ζ + (ǭ1ζ − ε̄z) ξ . (3.2)

The superflag is also a Kähler supermanifold, but the Kähler metric is not used in the

superflag Landau model, as constructed in [2]. Instead one uses another SU(2|1)-invariant

second-rank tensor field, a degenerate one such that there is no ‘kinetic’ term for the new

variable ξ. Specifically, the ‘kinetic’ part of the Lagrangian is constructed from a complex

SU(2|1)-invariant super one-form that induces a worldline one-form with the coefficient5

ω+ = K−1
2 K

− 1
2

1

{
ż
[
1 − zξζ̄ −K2ξξ̄

]
− ζ̇

[
zζ̄ +K2ξ̄

]}
, (3.3)

where

K1 = 1 +
(
ζ̄ + z̄ξ̄

)
(ζ + zξ) + ξ̄ξ , K2 = 1 + z̄z + ζζ̄ . (3.4)

In addition, the model uses the two real SU(2|1)-invariant super 2-forms

F1 = 2idZM ∧ dZ̄N̄∂N̄∂M logK1 = dB
F2 = −2idZM ∧ dZ̄N̄∂N̄∂M logK2 = dA , (3.5)

where

B = i
(
dZM∂M − dZ̄M̄∂M̄

)
logK1 = dZMBM + dZ̄M̄BM̄ ,

A = −i
(
dZM∂M − dZ̄M̄∂M̄

)
logK2 = dZMAM + dZ̄M̄AM̄ . (3.6)

The SU(2|1)-invariance of F1 follows directly from the transformation law

δ (logK1) =
(
ǭ1ζ − ǫ1ζ̄

)
+ (ǭ2 + zǭ1) ξ −

(
ǫ2 + z̄ǫ1

)
ξ̄ . (3.7)

The super 2-form F2 is the Kähler 2-form of the supersphere model since logK2 is the

Kähler potential K of the supersphere. Consequently, A is the U(1) connection used in

the construction of the supersphere model; in particular, its ξ component is zero, and the

non-zero components are ξ-independent.

We now have all the ingredients needed for the generalization from the supersphere

Landau model to the superflag Landau model. The superflag Lagrangian is

L =
∣∣ω+

∣∣2 +
[
ŻM

(
N ′AM +MBM

)
+ c.c.

]
, (3.8)

5This is equivalent to the expression of [2], which is given there in different coordinates.
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where N ′ and M are two real numbers. In the quantum theory, M remains arbitrary but

2N ′ must be an integer; we will later see that the M = 0 superflag model is quantum

equivalent to the supersphere model when 2N = 2N ′ + 1 , but let us first consider the

relation between the classical Lagrangians of these models. When M = 0 there are no

terms involving time derivatives of ξ in (3.8), so the equation of motion of this variable is

algebraic. By making explicit the ξ dependence in the Lagrangian, one finds that the ξ

equation of motion, for M = 0 , is

[(
1 − ζ̄ζ

)
|ż|2 + żz̄ ˙̄ζζ − ˙̄zzζ̇ζ̄ + ζ̇ ˙̄ζ

(
K2 − ζ̄ζ

)]
ξ = −ζ̇

[
˙̄z
(
1 − ζ̄ζ

)
+ z̄ ˙̄ζζ

]
. (3.9)

As long as ż 6= 0, one may use this equation to eliminate ξ, in which case the resulting

Lagrangian is equivalent to the Lagrangian for the superspherical Landau model, with

N ′ = N . However, when ż = 0, (3.9) is equivalent to

ζ̇ ˙̄ζ
[(
K2 − ζ̄ζ

)
ξ + z̄ζ

]
= 0 , (3.10)

so the solution for ξ is no longer unique but involves terms proportional to ζ̇ and ˙̄ζ with

arbitrary functions as coefficients. As we will see shortly, this feature is associated to a

fermionic gauge invariance of the M = 0 superflag model when restricted to configurations

with zero energy.

As the last topic of this subsection we note that the holomorphic superspace (z, ζ, ξ)

can be extended to the following complex supermanifold

(z, ζ, ξ, ̂̄ξ ), ̂̄ξ = ξ̄ K2 + ζ̄ z , (3.11)

which is still closed under the action of SU(2|1):

δ̂̄ξ =
i

2
(λ− µ) ̂̄ξ + ε̄z ̂̄ξ + ǭ2 + ǭ1 (z + ̂̄ξ ζ) . (3.12)

This extension of the holomorphic supersphere (z, ζ) will be exploited in section 5 where

we revisit the relationships between the supersphere and superflag Landau models.

3.1 Hamiltonian

We now turn to a Hamiltonian analysis of the general superflag model. The model has

four primary constraints, which occur in two complex conjugate pairs. One pair is

ϕζ = Pζ + i(ξ̄K2 + ζ̄z)Pz , ϕζ̄ = Pζ̄ − i(ξK2 + ζz̄)Pz̄ , (3.13)

where

Pζ = πζ − iN ′Aζ − iMBζ , Pz = (pz −N ′Az −MBz),

Pζ̄ = πζ̄ − iN ′Aζ̄ − iMBζ̄ , Pz̄ = (pz̄ −N ′Az̄ −MBz̄) . (3.14)

The other pair is

ϕξ = πξ − iMBξ, ϕξ̄ = πξ̄ − iMBξ̄ . (3.15)
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The Hamiltonian is

H0 = K2
2K

−1
1

[
1 +

(
ζ̄ + z̄ξ̄

)
ζ
] [

1 + ζ̄ (ζ + zξ)
]
PzPz̄ , (3.16)

where the subscript is a reminder that we may add any function on phase space that

vanishes on the subspace specified by the primary constraints. A remarkable feature of

this Hamiltonian is that it is independent of M . When we pass to the quantum theory,

this means that the energy levels are independent of M but this does not mean that the

parameter M is irrelevant because it can affect the norms of the quantum states. This

effect has a classical counterpart that we now explain.

A computation shows that the analytic constraint functions (ϕζ , ϕξ) have vanishing

Poisson brackets among themselves, but that the matrix of Poisson brackets of these func-

tions with their complex conjugates is non-zero. In fact,

det

(
{ϕζ , ϕζ̄}PB {ϕζ , ϕξ̄}PB

{ϕξ, ϕζ̄}PB {ϕξ, ϕξ̄}PB

)
= −

(
1 + ζζ̄

) (
1 +K2 ξ̄ξ

) [
H0 − 4M

(
N ′ +M

)]
. (3.17)

It follows that there is a gauge invariance on the surface in phase space with energy

H0 = 4M
(
N ′ +M

)
. (3.18)

Indeed, if the determinant of the constraints is weakly zero then the matrix of Dirac brackets

of the constraint functions is degenerate and some constraints must be ‘first class’, in Dirac’s

terminology, and according to Dirac’s formalism there is a gauge invariance for each first

class constraint. As the constraints are Grassmann odd in our case, the gauge invariances

have Grassmann odd parameters. This generalizes the analogous result of [3] for the planar

superflag model. From the analysis of the planar limit, we expect that this classical gauge

invariance leads to zero-norm states in the quantum theory whenever there is an energy

level with energy 4M(N ′ +M) , and we confirm this below. Note, in particular, that this

implies that there are zero norm ground states when M = 0 .

Before proceeding to the quantum theory we have to address a minor difficulty. The

Hamiltonian H0 does not commute, even ‘weakly’, with the constraints. This difficulty can

be circumvented by introducing the new variables

ξ1 = ζ + zξ , ξ2 = ξ . (3.19)

These were the variables used in [2], and the analog of H0 found by using these variables

commutes with the constraints. Alternatively, one can modify the Hamiltonian by adding

terms proportional to the constraint functions such that the new Hamiltonian commutes, at

least weakly, with the constraints. This second approach was the one adopted in [4] for the

planar superflag, and we will do the same here. Specifically, we take the new Hamiltonian

to be

H = K2
2K1 (Pz + iξPζ)

(
Pz̄ + iξPζ̄

)
. (3.20)

It may be verified that H is weakly equivalent to H0 but commutes (strongly) with the

constraints.
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3.2 Quantum theory

To pass to the quantum theory we make the replacement PA → −i∂A, as in (2.26), where

A = (z, ζ), and we also make the replacement

πξ → ∂ξ , πξ̄ → ∂ξ̄ , (3.21)

which is needed only for the second pair of constraints (3.15). The resulting Hamiltonian

operator6 is

HN ′ = −K2
2K1

(
∇(N ′)

z − ξ∇(N ′)
ζ

)(
∇(N ′)

z̄ − ξ̄∇(N ′)

ζ̄

)
, (3.22)

where

∇(N ′)
A = ∂A − iN ′AA , ∇(N ′)

Ā
= ∂Ā − iN ′AĀ . (3.23)

Because the analytic constraint operators commute, we may quantize à la Gupta-Bleuler by

requiring physical states to be annihilated by these operators. The result is that ‘physical’

wave functions must take the form

Ψ = KM
1 K−N ′

2 Φ (z, z̄sh, ζ, ξ) , (3.24)

where Φ is a ‘reduced’ wave function that depends on z̄ only through the ‘shifted’ coordinate

z̄sh = z̄ − ξζ̄ − z̄ (ζ + zξ) ζ̄ . (3.25)

For 2N ′ an integer, which we may assume to be positive, the Hamiltonian may be

diagonalized in the physical subspace, with energy eigenvalues [2]

EN ′ = ℓ(2N ′ + ℓ+ 1) , ℓ = 0, 1, 2, . . . . (3.26)

The wave functions for the LLL (ℓ = 0) is

Ψ(0) = KM
1 K−N ′

2 Φ(0)
an (z, ζ, ξ) . (3.27)

That is, the reduced LLL wave function is an analytic function. The reduced wave function

at all higher levels may be expressed in terms of a level ℓ analytic function Φ
(ℓ)
an according

to the formula

Φ(ℓ) = D2(N ′+1) · · · D2(N ′+ℓ) Φ(ℓ)
an (z, ζ, ξ) (ℓ > 0) , (3.28)

where

D2N ′ ≡ ∇2N ′

z − ξ∇2N ′

ζ = ∂z − ξ∂ζ −
2N ′ z̄sh
1 + zz̄sh

. (3.29)

As in the case of the superspherical Landau model, there is a natural SU(2|1) invariant

inner product on Hilbert space defined by a superspace integral, although the superspace

now has an additional complex anti-commuting coordinate. As shown in [2], this inner

product is

〈Υ|Ψ〉 =

∫
dzdz̄ ∂ζ∂ζ̄∂ξ∂ξ̄ K

−2
2 Υ∗Ψ . (3.30)

6Operator ordering ambiguities allow the addition of a constant, which we have set to zero.
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Performing the Berezin integration over all anti-commuting coordinates, we get an ordi-

nary integral over the sphere with an integrand determined by the four analytic functions

(A(ℓ), ψ(ℓ), χ(ℓ), F (ℓ)) appearing in the (ζ, ξ)-expansion of Φ
(ℓ)
an :

Φ(ℓ)
an = A(ℓ) + ζ

[

ψ(ℓ) +
∂zχ

(ℓ)

(2N ′ + 2ℓ+ 1)

]

+ ξχ(ℓ) + ζξ F (ℓ) . (3.31)

The net result, after integrating by parts to remove all derivatives, is that wave functions

at different levels are orthogonal, while

||Ψ(ℓ)
N ′ ||2 ≡ 〈Ψ|Ψ〉 = ℓ!

(2N ′ + ℓ+ 1)!

(2N ′ + 1)!

∫
dzdz̄

(1 + zz̄)2(N
′+ℓ+1)

×
{

(2M − ℓ)
(
2M + 2N ′ + ℓ+ 1

)
Ā(ℓ)A(ℓ) + F̄ (ℓ)F (ℓ)

+
(N ′ + ℓ+ 1) (2N ′ + 2M + ℓ+ 1)

(2N ′ + 2ℓ+ 1) (1 + zz̄)
χ̄(ℓ)χ(ℓ)

+ (2M − ℓ) (1 + zz̄) ψ̄(ℓ)ψ(ℓ)

}

. (3.32)

This is a simplified form of the result given in [2]; the unusual expansion of (3.31) has led

to a norm that is diagonal in the component functions. The finiteness of the norm (the S2

square-integrability requirement) requires, as usual, that fields of SU(2) spin s are degree

2s holomorphic polynomials in z. The SU(2) spin content will be computed explicitly in

the following subsection, but it is not difficult to see what the result will be. The fields

A(ℓ)(z) and F (ℓ)(z) each have spin s = N ′ + ℓ, while the fields χ(ℓ)(z) and ψ(ℓ)(z) have,

respectively, spins s = N ′ + ℓ+ 1
2 and s = N ′ + ℓ− 1

2 . This demonstrates, in particular, the

equality of the numbers of fermionic and bosonic degrees of freedom at any Landau level

without zero-norm states.

With the above norm, the model has ghosts. For positive M (which was the only case

considered in [2]) there are ghosts whenever ℓ > 2M and if 2M is a non-negative integer

then there are zero-norm states for ℓ = 2M . This means, in particular, that the model has

ghosts in this ‘naive’ norm for any positive M . The same is true for negative M , and in

this case there are zero norm states even for ℓ = 0 .

Of course, the sign of the norm has physical relevance only for Grassmann-even com-

ponent functions, and either A(ℓ) or ψ(ℓ) would be Grassmann-odd if we were to assume (as

in [2]) that wave functions are superfields (i.e. have definite Grassmann parity). However,

even in this case the above statements concerning ghosts still apply. We have been careful

to allow for (i) wave functions that are superfields, in which case the ‘Hilbert’ space is

actually a vector superspace, and (ii) wave functions for which all component fields are

ordinary functions (or bundle sections), in which case the Hilbert space is a vector space.

The ghost problem can be circumvented by another choice of SU(2|1)-invariant norm, but

we postpone the construction of this alternative norm until we have achieved a better

understanding of the action of SU(2|1) on the superflag Hilbert space.
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3.3 Unitary norm

The SU(2|1) symmetry of the superflag model implies the existence of Noether

charges, which become differential operators in the quantum theory, satisfying the

(anti)commutation relations of SU(2|1) given in section 2.2. These differential operators

acting on the whole superflag wave functions, determine a simpler set of differential oper-

ators that act on the analytic wave functions, and vice-versa since the full Noether charge

operators can be recovered from the simpler ‘analytic’ operators that we now present. The

even generators are

J− = −i∂z ,

J+ = −i
[
−2
(
N ′ + ℓ

)
z + z2∂z + zζ∂ζ − (ζ + zξ) ∂ξ

]
,

J3 = −
(
N ′ + ℓ

)
+ z∂z +

1

2
(ζ∂ζ − ξ∂ξ) ,

F = 2M +N ′ +
1

2
(ζ∂ζ + ξ∂ξ) . (3.33)

Note the ℓ-independence of B ; for the other generators one should view ℓ as an operator

(later to be called L) that takes the value ℓ in the ℓth level. The odd generators are

Π = ∂ζ , Q = z∂ζ − ∂ξ (3.34)

and

Π† =
(
2M + 2N ′ + ℓ

)
ζ − ζz∂z + ξ [(2M − ℓ) z − ζ∂ξ] ,

Q† = ζ∂z − (2M − ℓ) ξ . (3.35)

These results may be compared to the expressions (2.8). In the present case, the full

differential operators representing the generators (J+,Π
†, Q†) , which are determined by

the simpler ‘analytic’ forms given above, are the Hermitian conjugates of the generators

(J−,Π, Q) in the ‘naive’ norm.

We are now in a position to work out the SU(2|1) representation content at each

Landau level. Let us first consider the SU(2) content. We have

J2 = J−J+ + J2
3 + J3

=
(
N ′ + ℓ+ 1

) (
N ′ + ℓ

)
−
(
N ′ + ℓ+

1

4

)
ζ∂ζ

+

[
ζ∂z +

(
N ′ + ℓ+

3

4
− 1

2
ζ∂ζ

)
ξ

]
∂ξ . (3.36)

Now we act with this operator on the analytic wave functions of (3.31), which we may

rewrite as

Φ(ℓ)
an = A(ℓ) + ζψ(ℓ) +

[
ξ +

ζ∂z

2N ′ + 2ℓ+ 1

]
χ(ℓ) + ζξ F (ℓ) . (3.37)

We find that

J2Φ(ℓ)
an =

(
N ′ + ℓ

) (
N ′ + ℓ+ 1

)
A(ℓ) +

(
N ′ + ℓ− 1

2

)(
N ′ + ℓ+

1

2

)
ζψ(ℓ)
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+

(
N ′ + ℓ+

1

2

)(
N ′ + ℓ+

3

2

)[
ξ +

ζ∂z

2N ′ + 2ℓ+ 1

]
χ(ℓ)

+
(
N ′ + ℓ

) (
N ′ + ℓ+ 1

)
ζξ F (ℓ) . (3.38)

One reads off from this result the eigenfunctions of J2 and their eigenvalues. Acting with

J3 on the J2 eigenfunctions we get

J3

[
A(ℓ)

]
=
(
z∂z −N ′ − ℓ

)
A(ℓ) ,

J3

[
ζψ(ℓ)

]
= ζ

(
z∂z −N ′ − ℓ+

1

2

)
ψ(ℓ) ,

J3

[(
ξ +

ζ∂z

2N ′ + 2ℓ+ 1

)
χ(ℓ)

]
=

(
ξ +

ζ∂z

2N ′ + 2ℓ+ 1

)(
z∂z −N ′ − ℓ− 1

2

)
χ(ℓ)

J3

[
ζξ F (ℓ)

]
= ζξ

(
z∂z −N ′ − ℓ

)
F (ℓ) . (3.39)

Putting this all together we find the following sets of (2s + 1) spin-s joint eigenfunctions

of J2 and J3 :

s =
(
N ′ + ℓ

)
: znan , n = 0, . . . , 2N ′ + 2ℓ ,

s =

(
N ′ + ℓ− 1

2

)
: ζzpψn , p = 0, . . . , 2N ′ + 2ℓ− 1 ,

s =

(
N ′ + ℓ+

1

2

)
:

(
ξ +

(q + 1) ζ

2N ′ + 2ℓ+ 1

)
zqχq , q = 0, . . . , 2N ′ + 2ℓ+ 1 ,

s =
(
N ′ + ℓ

)
: ζξ zmfm , m = 0, . . . , 2N ′ + 2ℓ (3.40)

for constants (am, ψp, χq, fm) .

As mentioned already, there are two separate cases in which the ‘naive’ norm considered

so far has ghosts when M < 0. These are (i) 2M < −2N ′−1 , and (ii) −2N ′−1 < 2M < 0 .

Consider the operator

Gan = −1 + 2ξ∂ξ +
2

2N + 2ℓ+ 1
ζ∂z∂ξ . (3.41)

This commutes with J2 and J3, and hence with the Hamiltonian, as is clear from the

alternative expression

Gan =
1

2N ′ + 2ℓ+ 1

[
2J2 + 2 (F − 2M + ℓ)2 −

(
2N ′ + 2ℓ+ 1

)2]
. (3.42)

It also has the property that

G2
an ≡ 1 . (3.43)

As explained in [4], the same properties hold for the corresponding ‘full’ operator G, so each

of the eigenstates listed above has a definite ‘G-parity’. By inspection, one sees that for

−2N ′ − 1 < 2M < 0 , (3.44)
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the positive (negative) norm eigenstates have positive (negative) G -parity, and therefore

that the G is the ‘metric operator’ for M in the above range, in the sense that the new norm

|||Ψ|||2 ≡ 〈Ψ|GΨ〉 (3.45)

is positive definite; we refer to [4] for details of the formalism. In the planar limit, this

range extends to all negative M , so we should expect the planar limit of Gan to be the

M < 0 metric operator of the planar superflag found in [4], and this is indeed the case.

For M = 0 there are zero-norm states, as in the planar limit, but still no negative-norm

states. This allows us to redefine the states in a ‘physical’ Hilbert space to be equivalence

classes of states in the original Hilbert space in which two states that differ by a zero-norm

state are considered equivalent.

Now consider the operator

G̃an = 1 − 8
(
F − 2M −N ′

)
+ 8

(
F − 2M −N ′

)2
. (3.46)

It is manifest that G̃an commutes with the Hamiltonian, and hence the same is true of

G̃. One may verify that G̃2
an ≡ 1 , so that the eigenstates listed above also have a definite

G̃ -parity. Inspection shows that when 2M < −2N ′ − 1 the states with positive (negative)

norm have (positive) negative G̃-parity. The operator G̃ is therefore a ‘metric’ operator

for 2M < −2N ′ − 1 , which is a range that has no counterpart in the planar limit. As in

the planar limit, the metric operator for M > 0 is a more-complicated ‘dynamical’ one,

depending on the level. We skip the details of this case.

4. Hidden symmetries

We know that there is hidden worldline supersymmetry of the planar super-Landau models,

for M ≤ 0 . This implies the existence of some enlarged supersymmetry algebra for the

spherical super-Landau models, and we now aim to investigate this. For simplicity, we

now place M in the range for which the metric operator defining the unitary models is the

operator G defined by (3.41). As we have seen, this means that M should satisfy (3.44) but,

as we have also seen, we may allow M = 0 too. In other words, we now restrict M such that

−2N ′ − 1 < 2M ≤ 0 . (4.1)

Now, let O be some operator that commutes with the Hamiltonian, and hence generates

some symmetry of the model under investigation, and let O† be its hermitian conjugate

with respect to the ‘naive’, and non-positive, Hilbert space norm. Then its hermitian

conjugate with respect to the positive Hilbert space norm is (recall that G2 ≡ 1)

O‡ ≡ GO†G = O† +GO†
G , (4.2)

where

OG ≡ [G,O] (4.3)
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is another operator that commutes with the Hamiltonian. Note that

(OG)‡ =
[
G,O†

]
= − [G,O]† = − (OG)† ≡ −O†

G . (4.4)

Symmetry generators that do not commute with G thus generate, in general, additional

symmetries that are ‘hidden’ in the sense that their existence was not built into the

construction of the model. For the superflag model, it is the odd generators that fail to

commute with G, and this leads to the following new symmetry generators

ΠG = − 2

2N ′ + 2ℓ+ 1
∂ξ∂z ,

Π‡
G =

4M − 2ℓ

2N ′ + 2ℓ+ 1

[
ζ (1 + z∂z) +

(
2N ′ + 2ℓ+ 1

)
zξ − ζξ∂ξ

]
,

QG =
2

2N ′ + 2ℓ+ 1

(
2N ′ + 2ℓ+ 1 − z∂z − ζ∂ζ

)
∂ξ ,

Q‡
G = − 4M − 2ℓ

2N ′ + 2ℓ+ 1

[(
2N ′ + 2ℓ+ 1

)
ξ + ζ∂z

]
. (4.5)

The naive hermitian conjugate of a symmetry operator O will not coincide with its

new hermitian conjugate O‡ unless O commutes with G . For this reason, it is convenient

to choose a basis in which the original SU(2|1) symmetry operators O are replaced by the

operators

Õ = O +
1

2
OGG , (4.6)

which commute with G even when O does not. This property means that

Õ‡ = Õ† = O† − 1

2
GO‡

G . (4.7)

In the case that O is hermitian with respect to the ‘naive’ Hilbert space metric, the

operator Õ will be hermitian with respect to the new Hilbert space norm.

When applied to the operators Π and Q, the definition (4.6) yields

Π̃ = Π +
1

2
ΠG , Π̃† = Π† − 1

2
Π‡

G ,

Q̃ = Q+
1

2
QG , Q̃† = Q† − 1

2
Q‡

G , (4.8)

where we have used the remarkable identities

ΠGG = ΠG , QGG = QG . (4.9)

In terms of the rescaled odd charges

(
Π̃′, Q̃′

)
=

√
2N ′ + 2ℓ+ 1

2M + 2N ′ + ℓ+ 1

(
Π̃, Q̃

)
, (4.10)

and the redefined U(1) generator

F ′ = F − 2M + ℓ , (4.11)
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one finds, after some computation, that the non-zero (anti)commutation relations of the

odd charges (Π̃′, Q̃′) , and their hermitian conjugates, and the even SU(2) × U(1) charges

(J3, J±, F
′) are precisely of the standard SU(2|1) form given in section 2.2. Thus, these

charges provide an alternative basis for the SU(2|1) symmetry algebra.

Now we turn to the ‘hidden’ symmetry charges. Their non-zero anticommutators are

{
ΠG,Π

‡
G

}
=

4 (ℓ− 2M)

2N ′ + 2ℓ+ 1

(
J3 + F̌

)
,

{
QG, Q

‡
G

}
=

4 (ℓ− 2M)

2N ′ + 2ℓ+ 1

(
−J3 + F̌

)
,

{
ΠG, Q

‡
G

}
= −i 4 (ℓ− 2M)

2N ′ + 2ℓ+ 1
J− ,

{
Π‡

G, QG

}
= i

4 (ℓ− 2M)

2N ′ + 2ℓ+ 1
J+ , (4.12)

where

F̌ = 2M + 2N ′ + ℓ+ 1 − F . (4.13)

Notice that the coefficients are level-dependent. The ℓ-dependence in the denominators is

easily removed by a level-dependent rescaling of the odd charges but the (ℓ − 2M) factor

in the numerators is more problematic because when M = 0 this factor is zero for ℓ = 0

but non-zero for ℓ > 0 . For this reason, we will discuss these two cases separately.

4.1 −2N ′ − 1 < 2M < 0

In this case we may define new odd charges by

Π̌G = −
√

2N ′ + 2ℓ+ 1

4 (ℓ− 2M)
Q‡

G , Q̌G =

√
2N ′ + 2ℓ+ 1

4 (ℓ− 2M)
Π‡

G , (4.14)

in terms of which the anti-commutation relations of (4.12) become
{
Π̌G, Π̌

‡
G

}
= −J3 + F̌ ,

{
Q̌G, Q̌

‡
G

}
= J3 + F̌ ,

{
Π̌G, Q̌

‡
G

}
= iJ− ,

{
Π̌‡

G, Q̌G

}
= −iJ+ . (4.15)

To present the commutators of these new odd charges with the even charges of SU(2|1) we

need give only the non-zero commutators with (Π̌G, Q̌G) charges since the remainder are

found by hermitian conjugation; these are

[
F̌ , Π̌G

]
= −1

2
Π̌G ,

[
F̌ , Q̌G

]
= −1

2
Q̌G ,

[
J3, Π̌G

]
= −1

2
Π̌G ,

[
J3, Q̌G

]
=

1

2
Q̌G ,

[
J+, Π̌G

]
= iQ̌G ,

[
J−, Q̌G

]
= −iΠ̌G . (4.16)

This shows that the new odd symmetry charges transform as a charged doublet under

the U(2) subgroup of SU(2|1). In fact, the operators (Π̌‡, Q̌‡), together with their hermi-

tian conjugates, and the even charges (J3, J±, F̌ ), obey the (anti)commutation relations of

SU(2|1) given in (2.2). The full symmetry group therefore contains two distinct SU(2|1)
superalgebras. As F ′ is the U(1) charge of one of these superalgebras and F̌ the U(1)

charge of the other one, the full symmetry group must contain

Z = F ′ + F̌ = 2N ′ + 2ℓ+ 1 , (4.17)
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which is a level-dependent central charge. However, this level-dependence does not present

a problem; it just means that we have a central charge

Z = 2L+ 2N ′ + 1 , (4.18)

where L is the level operator .

The two SU(2|1) superalgebras are non-commuting because there are non-zero anti-

commutators of the odd charges from one with the odd charges from the other. These are
{

Π̃′, Π̌‡
G

}
=
{
Q̃′, Q̌‡

G

}
= iJ− ,

{
Π̃′‡, Π̌G

}
=
{
Q̃′‡, Q̌G

}
= −iJ+ , (4.19)

where the analytic operators representing J± are

J+ = i
√

(ℓ− 2M) (2M + 2N ′ + ℓ+ 1) ξζ ,

J− =
i√

(ℓ− 2M) (2M + 2N ′ + ℓ+ 1)
∂ξ∂ζ . (4.20)

These satisfy, together with

J3 =
1

2
(−1 + ξ∂ξ + ζ∂ζ) , (4.21)

the standard su(2) commutation relations

[J+,J−] = 2J3 , [J3,J±] = ±J± . (4.22)

Finally, the non-zero commutators of these new SU(2) charges with the odd charges are
[
J+, Π̃

′
]

= −iΠ̌G,
[
J+, Q̃

′
]

= iQ̌G ,
[
J−,Π

′
G

]
= iΠ̃′,

[
J−, Q̌G

]
= −iQ̃′ ,

[
J3, Π̃

′
]

= −1

2
Π̃′ ,

[
J3, Q̃

′
]

= −1

2
Q̃′ ,

[
J3, Π̌G

]
=

1

2
Π̌G ,

[
J3, Q̌G

]
=

1

2
Q̌G , (4.23)

and hermitian conjugates. These commutation relations show that (Π̃′, Π̌G) and (Q̃′, Q̌G)

are doublets of the SU(2) group generated by (J±,J3) .

We have now shown that the charges

{J±, J3,J±,J3, Z; Π̃′, Q̃′; Π̌G, Q̌G} (4.24)

span a Lie superalgebra, with structure constants that are level independent. We have

therefore found a finite-dimensional ‘enlarged’ symmetry algebra. The brackets where the

central charge Z defined in (4.18) contributes, are:

{Π̌G, Π̌
‡
G} = −J3 − J3 + Z , {Q̌G, Q̌

‡
G} = J3 − J3 + Z ,

{Π̃′, Π̃′†} = −J3 + J3 + Z , {Q̃′, Q̃′†} = J3 + J3 + Z . (4.25)

Its even subalgebra is that of SU(2)×SU(2)×U(1), where the U(1) charge is central, and its

four complex odd generators transform as the (2,1)⊕(1,2) of SU(2)×SU(2). This uniquely

fixes the full symmetry algebra to be that of SU(2|2); recall that the groups SU(p|q) have

even subgroup SU(p) × SU(q) × U(1) with the U(1) charge being central when p = q .
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4.1.1 Casimir considerations

Acting on the wave functions at the ℓth level, the SU(2|1) Casimir operators (2.5) and (2.6)

for the superflag model become

C2 = (ℓ− 2M)
(
2M + 2N ′ + ℓ+ 1

)
, C3 =

(
4M + 2N ′ + 1

)
C2 . (4.26)

For the general superflag model, one has

H = C2 + 2M
(
2M + 2N ′ + 1

)
. (4.27)

At levels for which C2 = 0 , which is possible when 2M is a non-negative integer, then

C3 = 0 too, and hence the SU(2|1) representation is ‘atypical’. In particular, C2 = C3 = 0

for the LLL when M = 0, in which case

H = C2

∣∣
M=0

= ℓ
(
ℓ+ 2N ′ + 1

)
, (4.28)

in agreement with our result of (2.33) for the supersphere if we make the identification

2N ′ = 2N − 1 . (4.29)

The su(2|2) symmetry algebra for M < 0 is a subalgebra of the enveloping algebra of

su(2|1) . To see this we define the following functions of the Casimir operators:

A =

√
C3 +

√
C2

3 + 4C3
2

2C2

√
C2

3 + 4C3
2

,

B =

√
1

2C3
2

(
C2

3 + 4C3
2 −C3

√
C2

3 + 4C3
2

)
,

C =

√
1

2C3
2

(
C2

3 + 2C3
2 −C3

√
C2

3 + 4C3
2

)
. (4.30)

The odd charges of SU(2|2) may now be written as

Π̌G = A



iJ−Π† +Q†



J3 − F +
C3

2C2
−
√(

C3

2C2

)2

+ C2







 ,

Q̌G = A



iQ†J+ + Π†



J3 + F + 1− C3

2C2
+

√(
C3

2C2

)2

+ C2







 ,

Π̃′ = BΠ + CQ̌‡
G , Q̃′ = BQ− CΠ̌‡

G . (4.31)

The even charges are those of the original SU(2) symmetry, (J±, J3) , the central charge

Z = L+ 2N + 1 , and the ‘hidden’ SU(2) charges

J− =
i√
C2

ΠQ , J+ = i
√
C2Q

†Π†, J3 = F − C3

2C2
. (4.32)
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4.2 M = 0 and the planar limit

In this case the anticommutation relations (4.12) reduce to

{ΠG,Π
‡
G} =

4ℓ

2N + 2ℓ

(
J3 + F̌

)
,

{QG, Q
‡
G} =

4ℓ

2N + 2ℓ

(
−J3 + F̌

)
,

{ΠG, Q
‡
G} = −i 4ℓ

2N + 2ℓ
J− , (4.33)

where we have used (4.29). As all these anti-commutators vanish for ℓ = 0, the LLL states

must be annihilated by both (ΠG, QG) and their hermitian conjugates (Π‡
G, Q

‡
G) . At higher

levels, we get supermultiplets of states that may be constructed by the repeated action of

(Π‡
G, Q

‡
G) on ‘Clifford vacuum’ states annihilated by (ΠG, QG) . In fact, all higher levels

may be shown to form representations of SU(2|2) by the argument just used to analyze all

levels when M < 0 . However, because of the exceptional LLL for M = 0, one cannot say

that the model has an SU(2|2) symmetry. Neither is there a conventional supersymmetry,

as there is in the planar limit, because the commutators of the ‘supersymmetry’ generators

(ΠG, QG) with the even generators of SU(2|1) produce further odd symmetry generators.

In fact, closure of the algebra appears to require an infinite number of generators.

As this state of affairs is in marked contrast to the simple results obtained in [4] for

the superplane Landau model, we now discuss how those results may be recovered in the

planar limit. To do so we must restore dependence on the radius R of the sphere that is the

‘body’ of both the supersphere and superflag supermanifolds. Specifically, the Hamiltonian

must be rescaled:

H → H/R2 = 2ℓ
(
N/R2 + ℓ/R2

)
. (4.34)

We then take R→ ∞ , keeping fixed

κ = N/R2 . (4.35)

This gives

Hsuperplane = 2κL , (4.36)

where L is the level operator with eigenvalue ℓ on the ℓ th level. This agrees with [3, 4]

after taking into account the difference in notations of that paper.7

From the N dependence of the generators (J±, J3, F̌ ) we find that

J−/R
2 = O

(
1/R2

)
, J+ = −2iκz + O

(
1/R2

)
,

F̌ + J3 = O
(
1/R2

)
, F̌ − J3 = 2κ+ O

(
1/R2

)
. (4.37)

The anti-commutation relations (4.33) can now be written as

{ΠG,Π
‡
G} = O

(
1/R2

)
, {ΠG, Q

‡
G} = O

(
1/R2

)
, (4.38)

7Confusingly for present purposes, the level number ℓ was called N in [3, 4]. The parameter N used

here does not appear as such in the planar limit because it is replaced by the real number κ .
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and

{QG, Q
‡
G} = 2ℓ+ O

(
1/R2

)
. (4.39)

Thus, only QG survives the planar limit, and it is proportional to the worldline supersym-

metry charge S of [4].

5. Supersphere from superflag

In this section we show how the quantum states of the supersphere model and its Hamil-

tonian can be recovered using the basic geometric objects of the superflag manifold

SU(2|1)/[U(1) × U(1)]. The supersphere SU(2|1)/U(1|1) is an SU(2|1) invariant subspace

in SU(2|1)/[U(1) × U(1)], whence it follows that any considerations related to the super-

sphere should have an equivalent formulation in terms of the properly constrained objects

defined on the superflag. Throughout this section we assume that all wave functions are

superfields, i.e. that they have definite Grassmann parity.

5.1 Covariant derivatives

As shown in [2], the geometry of the superflag manifold SU(2|1)/[U(1)×U(1)] is described

by a set of covariant derivatives with non-trivial U(1) × U(1) connections:

D−=D−−(D− logK2)Ĵ3+(D− logK1)B̂ , D+ = D+ + (D+ logK1)B̂

D̄− = D̄− − (D̄− logK1)B̂ , D̄+ =D̄++(D̄+ logK2)Ĵ3−(D̄+ logK1)B̂ ,

D−− = D−− − (D−− logK2) Ĵ3 , D++ = D++ + (D++ logK2) Ĵ3 , (5.1)

subject to the conjugation rules8

D̄+ = (D−) , D̄− = (D+) , D++ = (D−−) . (5.2)

Explicit expressions for the covariant derivatives were given in [2] for local superflag coor-

dinates (z, ξ1, ξ2), where (ξ1, ξ2) = (ζ + zξ, ξ). Here we use the local coordinates (z, ζ, ξ),

in which case

D− = (K1K2)
1
2
{
∂ζ −K−1

2

(
z̄ − ξζ̄

)
∂ξ +K−1

1

[
(1 + zz̄)ξ̄ + zζ̄

]
(∂z − ξ∂ζ)

}
,

D̄+ = −(K1K2)
1
2
{
∂ζ̄ −K−1

2

(
z + ξ̄ζ

)
∂ξ̄ −K−1

1 [(1 + zz̄)ξ + z̄ζ]
(
∂z̄ − ξ̄∂ζ̄

)}
,

D+ = K
− 1

2
2 ∂ξ , D̄− = −K− 1

2
2 ∂ξ̄ ,

D−− = K
1
2
1 K2 (∂z − ξ∂ζ) , D++ = K

1
2
1 K2

(
∂z̄ − ξ̄∂ζ̄

)
. (5.3)

The functions K1 and K2 are given for our choice of coordinates9 in (3.4). In (5.1), the

operators B̂, Ĵ3 are ‘matrix’ parts of the U(1) generators J3 and B , where B is related to

the generator F of the previous sections by

B =
1

2
(F − J3) . (5.4)

8These rules are the same as those for the purely ‘derivative’ parts of the covariant derivatives.
9The expressions in [2] differ because of the different coordinates used there.
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The covariant derivatives have the following commutation relations with the operator

F̂ : [
F̂ ,D±

]
=

1

2
D± ,

[
F̂ , D̄±

]
= −1

2
D̄± ,

[
F̂ ,D±±

]
= 0 . (5.5)

It is also useful to have the commutation relations with the operators Ĵ3 and B̂ :

[Ĵ3 ,D±] = ±1

2
D± , [Ĵ3 , D̄±] = ±1

2
D̄± , [Ĵ3 ,D±±] = ±D±± ,

[B̂ ,D±±] = ∓1

2
D±± , [B̂ ,D−] =

1

2
D− , [B̂ , D̄+] = −1

2
D̄+ ,

[B̂ ,D+] = [B̂ , D̄−] = 0 . (5.6)

In what follows, a crucial role will be played by the (anti)commutation relations be-

tween the covariant derivatives:

{D−, D̄−} = −D−− , {D+, D̄+} = D++ ,

{D−, D̄+} = 2(B̂ + Ĵ3) = F̂ + Ĵ3 , {D+, D̄−} = 2B̂ = F̂ − Ĵ3 ,

{D−,D+}={D̄−, D̄+}={D±,D±}={D̄±, D̄±}=0 ,

[D++,D−] = −D+, [D++,D+] = 0 , [D++, D̄−] = D̄+, [D++, D̄+] = 0 ,

[D−−,D+] = D−, [D−−,D−] = 0 , [D−−, D̄+]=−D̄−, [D−−, D̄−]=0 ,

[D++,D−−] = −2 Ĵ3 . (5.7)

These relations are equivalent to the Maurer-Cartan equations for the left-invariant 1-forms

on the superflag SU(2|1)/[U(1)×U(1)], and so fully encode the geometry of this supercoset

manifold. They can be derived from the Maurer-Cartan equations on the superflag manifold

without reference to the explicit form of the covariant derivatives.

5.1.1 Superflag superfields

The U(1) × U(1) operators (Ĵ3, B̂) have eigenvalues (N̂ , M̂ ). Let Ψ(N̂,M̂) denote an eigen-

function of these operators:

Ĵ3 Ψ(N̂,M̂) = N̂ Ψ(N̂,M̂) , B̂Ψ(N̂,M̂) = M̂ Ψ(N̂,M̂) . (5.8)

A covariant derivative of any such eigenfunction (which is a superfield on the superflag

manifold) is another eigenfunction because the covariant derivatives have definite U(1) ×
U(1) charges as a consequence of the commutation relations (5.5) and (5.6).

The general SU(2|1)/[U(1)×U(1)] superfields Ψ(N̂ ,M̂) have the following transformation

law under the odd SU(2|1) transformations [2]:

δΨ(N̂ ,M̂) = −N̂
(
ǫ1ζ̄ + ǭ1ζ

)
Ψ(N̂,M̂)

− M̂
[
ǫ1(ζ̄ + z̄ξ̄) + ǫ2ξ̄ + ǭ1(ζ + zξ) + ǭ2ξ

]
Ψ(N̂ ,M̂) . (5.9)

It should be appreciated that the SU(2|1)/[U(1) × U(1)] superfields defined by (5.8)

are purely geometric objects having no a priori relation to the quantum superflag or su-

persphere wave superfunctions that we discussed in the previous sections. Consequently,
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the real eigenvalues (N̂ , M̂) are not obliged to coincide with the model parameters N,N ′

and M appearing in the Lagrangians (2.20) and (3.8). Nevertheless, it will turn out that

the wave functions of the quantum superflag Landau model are superfields Ψ̃(N̂ ,M̂) with

N̂ = N ′, M̂ = M that satisfy, in addition to the general U(1) × U(1) stability subgroup

conditions (5.8), the chirality constraints

D̄+Ψ̃(N̂,M̂) = D̄−Ψ̃(N̂,M̂) = 0 . (5.10)

5.1.2 Supersphere superfields

Let us consider another particular class of the general superfields Ψ(N̂,M̂) defined by (5.8),

namely those subject to the restriction

D+Ψ(N̂,M̂) = D̄−Ψ(N̂,M̂) = 0 . (5.11)

By virtue of the second anticommutation relation in (5.7), these constraints are compatible

with a non-zero superfield only when M̂ = 0. Then, from the definition (5.1), it follows

that D+ = D+ and D̄− = D̄− when these operators act on the Ψ(N̂,0) superfields. Recalling

the precise expressions for D+ and D̄− from (5.3), we conclude that (5.11) is equivalent,

for M̂ = 0 , to

∂ξΨ
(N̂ ,0) = ∂ξ̄Ψ

(N̂ ,0) = 0 . (5.12)

In other words, for M̂ = 0 the general SU(2|1)/[U(1)×U(1)] superfields may be consistently

restricted, by the covariant conditions (5.11), to supersphere superfields, which have no

dependence on the Grassmann-odd complex coordinate ξ and its complex conjugate ξ̄.

As we shall see soon, the wave superfunctions of the quantum supersphere model

indexed by N belong to this subclass of the SU(2|1)/[U(1)×U(1)] superfields in which one

should identify N̂ = N .

5.1.3 Casimir operators

For what follows, it will be instructive to rewrite the quadratic and cubic SU(2|1) Casimir

operators (2.5) and (2.6) in terms of the above covariant derivatives. These are

C2 =
1

2

(
2(Ĵ3)

2 − {D++,D−−} − [D̄+,D−] − [D̄−,D+]
)
− (F̂ )2 , (5.13)

C3 =
1

4

(
{D−−, [D+, D̄+]} − {D++, [D−, D̄−]}

)

+
1

4
{Ĵ3, [D+, D̄−] − [D−, D̄+]} − 1

2
{F̂ , {D++,D−−} − 2(Ĵ3)

2}

+
3

4
{F̂ , [D+, D̄−] + [D−, D̄+]} − 2(F̂ )3 − F̂ . (5.14)

Perhaps, the simplest way to prove the coincidence of (5.13) and (5.14) with (2.5)

and (2.6) on general superflag superfields is to use one more equivalent expression of the

same invariant operators through the SU(2|1) generators in the manifestly U(2) covariant

basis:

C2 =
1

2
[Q̄k, Qk] − F 2 − 1

2
T ikTik , (5.15)

C3 =
1

4
{T ik, [Qi, Q̄k]} +

3

4
{F, [Qi, Q̄i]} −

1

2
{F, T ikTik} − 2F 3 − F . (5.16)
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In this basis, the (anti)commutation relations of the superalgebra su(2|1) are

{Qi, Q̄k} = ǫikF + Tik , {Qi, Qk} = {Q̄i, Q̄k} = 0 ,

[Tik, Ql] =
1

2
(ǫilQk + ǫklQi) , [Tik, Q̄l] =

1

2

(
ǫilQ̄k + ǫklQ̄i

)
,

[F,Ql] =
1

2
Ql , [F, Q̄l] = −1

2
Q̄l ,

[Tik, Tlj ] = ǫijTkl + ǫklTij , Q̄i = (Qi)
† . (5.17)

5.2 Supersphere in terms of the superflag superfields

As was noticed in section 2.3 (eq. (2.31)), the supersphere Hamiltonian (2.27) coincides with

the Casimir operator C2 . On the other hand, in section 2.4, based on considering invariant

norms, it was anticipated that the quantum supersphere model at 2N is equivalent to the

particular case of the quantum superflag model at 2N ′ = 2N − 1 and M = 0 . Following

this observation, we are led to consider the operator (5.13) at M̂ = M = 0 , i.e. at

(F̂ )2 − (Ĵ3)
2 = 0 , (5.18)

as the appropriate ‘would-be’ Hamiltonian of the supersphere in the manifestly covariant

formulation through superflag superfields

H = −1

2

(
D++D−− + D−−D++

)
+

1

2
[D−, D̄+] +

1

2
[D+, D̄−] . (5.19)

In section 5.4 we shall prove that this operator indeed reduces to (2.27) on the properly con-

strained SU(2|1)/[U(1)×U(1)] superfields. Moreover, being restricted to the general super-

flag model wave functions (5.10) (with M̂ = M 6= 0), it reduces to the covariant form of the

superflag model Hamiltonian (3.22) (modulo a constant shift, see eq. (5.24) below). Thus it

can be regarded as a sort of ‘master’ Hamiltonian for these two different quantum models.

Now we present the covariant form of the supersphere wave functions satisfying (5.11).

The supersphere LLL wave function Ψ
(N,0)
0 is defined by the conditions

(a) : D+Ψ
(N,0)
0 = D̄−Ψ

(N,0)
0 = 0 ; (b) : D̄+Ψ

(N,0)
0 = D++Ψ

(N,0)
0 = 0 . (5.20)

It can be easily checked that such functions are annihilated by the operator H of (5.19) as

a consequence of the (anti)commutation relations (5.7):

H Ψ
(N,0)
0 = 0 . (5.21)

The conditions (5.20a) put Ψ
(N,0)
0 on the supersphere, eliminating the dependence on (ξ, ξ̄).

Then eqs. (5.20b) are the covariant chirality conditions which effectively eliminate the

dependence on z̄ and ζ̄; this can be made manifest by solving these constraints.

Already on this simplest example one can explicitly see the equivalence relation between

the M = 0 superflag model and the supersphere model anticipated in the previous sections.

The supersphere LLL wave function can be represented as

Ψ
(N,0)
0 = D+Ψ̃

(N− 1
2
,0)

0 , (5.22)
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where Ψ̃
(N− 1

2
,0)

0 obeys the constraints

D̄−Ψ̃
(N− 1

2
,0)

0 = D̄+Ψ̃
(N− 1

2
,0)

0 = D++Ψ̃
(N− 1

2
,0)

0 = 0 . (5.23)

The wave function defined by (5.22) satisfies the constraints (5.20) as a consequence

of (5.23) and the (anti)commutation relations (5.7) at M = 0 (in particular, the rela-

tion D+D+ = 0). Now let us examine the superfunction Ψ̃
(N− 1

2
,0)

0 . It is covariantly chiral

and analytic. We should also take into account that on the general set of superfunctions

Ψ̃(N̂ ,M̂) obeying the chirality conditions (5.10) the operator (5.19) is reduced, modulo a

constant shift by 2M̂ , to the superflag Hamiltonian in the covariant formulation [2]

H ⇒ H ′
SF = −D−−D++ − 2M̂ = HSF − 2M̂ . (5.24)

The superfunction Ψ̃
(N− 1

2
,0)

0 is a particular case of these general chiral functions correspond-

ing to N̂ = N ′ = N − 1
2 , M̂ = M = 0 and satisfying the additional analyticity condition

D++Ψ̃
(N− 1

2
,0)

0 = 0 . Hence, Ψ̃
(N− 1

2
,0)

0 is just the LLL wave function for the N ′ = N − 1
2

superflag model at M̂ = M = 0 . It should be pointed out that Ψ
(N,0)
0 is Grassmann-odd

if Ψ̃
(N− 1

2
,0)

0 is Grassmann-even and vice versa. The first option precisely matches with our

previous choice of the Grassmann parity of the wave superfunctions in the supersphere and

superflag models. Note that (5.22) admits gauge invariance

Ψ̃
(N− 1

2
,0)

0
′ = Ψ̃

(N− 1
2
,0)

0 + Λ(N− 1
2
,0) , (5.25)

D+Λ(N− 1
2
,0) = D̄+Λ(N− 1

2
,0) = D̄−Λ(N− 1

2
,0) = D++Λ(N− 1

2
,0) = 0 .

This can be used to remove half the component fields from Ψ̃
(N− 1

2
,0)

0 and to equate the

numbers of the independent component fields in the left-hand and right-hand sides of (5.22);

this number is just (2 + 2), i.e. that of the ‘ultrashort’ multiplet of SU(2|1).
To single out, in the variety of the SU(2|1)/[U(1) × U(1)] superfields, the supersphere

wave functions related to an ℓ > 0 level, we will proceed in the following two-step way.

First, we define the Grassmann-odd function

Ψ
(N,0)
ℓ = (D−−)ℓΦ(N+ℓ,− ℓ

2
) , (5.26)

where the relevant ‘ground state wave function’ Φ(N+ℓ,− ℓ

2
) is also fermionic and satisfies

the conditions

(a) : D+Φ(N+ℓ,− ℓ

2
) = 0 ; (b) : D̄+Φ(N+ℓ,− ℓ

2
) = D++Φ(N+ℓ,− ℓ

2
) = 0 . (5.27)

It is straightforward to check that

H Ψ
(N,0)
ℓ = (2Nℓ+ ℓ2)Ψ

(N,0)
ℓ , (5.28)

as a consequence of (5.7) and (5.27). Thus, Ψ
(N,0)
ℓ is an eigenfunction of the operator (5.19)

with the same eigenvalue as in (2.33). Note that the condition (5.27a) still leaves the

dependence on ξ̄ in Φ(N+ℓ,− ℓ

2
) .
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Another set of eigenfunctions of the ‘would-be’ Hamiltonian (5.19) is

Ψ̂
(N,0)
ℓ = D−(D−−)ℓ−1Φ̂(N+ℓ− 1

2
,− ℓ

2
) , (5.29)

where

Φ̂(N+ℓ− 1
2
,− ℓ

2
) = D̄−Φ(N+ℓ,− ℓ

2
) . (5.30)

It is easy to check that

H Ψ̂
(N,0)
ℓ = (2Nℓ+ ℓ2) Ψ̂

(N,0)
ℓ . (5.31)

The bosonic reduced wave function Φ̂(N+ℓ− 1
2
,− ℓ

2
) satisfies the conditions

(a) : D̄−Φ̂(N+ℓ− 1
2
,− ℓ

2
) = 0 , (b) : D̄+Φ̂(N+ℓ− 1

2
,− ℓ

2
) = D++Φ̂(N+ℓ− 1

2
,− ℓ

2
) = 0 , (5.32)

which follow from (5.27) on taking into account the relations (5.7). Using the rela-

tion (5.30), eq.(5.29) can be rewritten as

Ψ̂
(N,0)
ℓ = D−D̄−(D−−)ℓ−1Φ(N+ℓ,− ℓ

2
) . (5.33)

In other words, both series of eigenfunctions can be produced from the single fermionic

‘ground state’ wave function Φ(N+ℓ,− ℓ

2
) by applying to it the operators D−− and D−D̄− .

The latter operator can appear only once, as in (5.33), due to the reduction relation

(D−D̄−) (D−D̄−) = −(D−D̄−)D−− , (5.34)

which follows from (5.7). Actually, Φ̂(N+ℓ− 1
2
,− ℓ

2
) is just the covariant definition of the

highest component in the ξ̄-expansion of Φ(N+ℓ,− ℓ

2
) .

The next step consists in representing the ‘reduced wave function’ Φ(N+ℓ,− ℓ

2
) in (5.26)

as

Φ(N+ℓ,− ℓ

2
) = D+Φ̃(N+ℓ− 1

2
,− ℓ

2
) . (5.35)

The ‘prepotential’ Φ̃(N+ℓ− 1
2
,− ℓ

2
) is assumed to satisfy the conditions

D̄−Φ̃(N+ℓ− 1
2
,− ℓ

2
) = D̄+Φ̃(N+ℓ− 1

2
,− ℓ

2
) = D++Φ̃(N+ℓ− 1

2
,− ℓ

2
) = 0 , (5.36)

and hence can be identified with the level ℓ reduced wave function of the superflag model

with the U(1) charges 2N ′ = 2N − 1,M = 0 . The corresponding full wave functions are

defined by

Ψ̃
(N− 1

2
,0)

ℓ = (D−−)ℓΦ̃(N+ℓ− 1
2
,− ℓ

2
) , (5.37)

and on them the operator H is reduced (cf. (5.24)) to

H ⇒ HSF (M=0) = −D−−D++ , (5.38)

with the eigenvalues

Eℓ = (2N − 1)ℓ+ ℓ(ℓ+ 1) . (5.39)

The constraints (5.27) are satisfied as a consequence of (5.36) and the relation D+D+

= 0 . There emerge no additional constraints on Φ(N+ℓ,− ℓ

2
). Using the second relation

in (5.7), one obtains

D̄−Φ(N+ℓ,− ℓ

2
) = −ℓ Φ̃(N+ℓ− 1

2
,− ℓ

2
) . (5.40)
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For ℓ = 0 this reproduces the first of the LLL supersphere wave function constraints (5.20b),

while for ℓ ≥ 1 it yields the relation inverse to (5.35). So, at ℓ 6= 0 the relation (5.35) is

invertible (this property replaces the gauge invariance (5.25) of the LLL case).

Using (5.35) and (5.40), as well as the (anti)commutation relations (5.7), one can

express both previously defined auxiliary functions (5.26) and (5.29) through the (N −
1
2 ,M = 0) superflag reduced wave function Φ̃(N+ℓ− 1

2
,− ℓ

2
):

Ψ
(N,0)
ℓ + Ψ̂

(N,0)
ℓ ≡ Ψ

(N)
ℓ = D+

[
(D−−)ℓΦ̃(N+ℓ− 1

2
,− ℓ

2
)
]

= D+Ψ̃
(N− 1

2
,0)

ℓ ,

Ψ̂
(N,0)
ℓ = −ℓD−(D−−)ℓ−1Φ̃(N+ℓ− 1

2
,− ℓ

2
) . (5.41)

It is easy to show that the function Ψ
(N)
ℓ defined in (5.41) satisfies both the supersphere

conditions (5.11). The first one is obeyed due to the property D+D+ = 0, while the

second one due to chirality of Φ̃(N+ℓ− 1
2
,− ℓ

2
) . This property can be made manifest using the

relation (5.40):

Ψ
(N)
ℓ = −1

ℓ
(D+D̄−)Ψ

(N,0)
ℓ =

1

ℓ
(D+D̄−)Ψ̂

(N,0)
ℓ . (5.42)

Using the general transformation law (5.9) of the superflag superfields Ψ(N̂ ,M̂) un-

der the odd SU(2|1) transformations, one immediately observes that the wave function

Ψ
(N,0)
ℓ (5.41), as well as the LLL wave function Ψ

(N)
0 defined in (5.20), have the same

transformation properties as the similar supersphere wave superfunctions defined in sec-

tion 2.4 (eqs. (2.49) and (2.50)). On top of this, these constrained SU(2|1)/[U(1) × U(1)]

superfields satisfy the basic condition (5.11), i.e. live on the supersphere, and are the

eigenfunctions of the operator H (5.19) with the correct eigenvalues (2.33). As shown in

the section 5.4, this ‘would-be’ Hamiltonian becomes exactly (2.27) when applied to these

superfields, which may therefore be identified with the supersphere wave superfunctions

defined in (2.32) and (2.37)–(2.39); this justifies the use of the same notation for both sets

of superfields. In section 5.4 we shall also show how the reduced superfields Φ
(±)
ℓ defined

in (2.36) appear within the covariant SU(2|1)/[U(1) × U(1)] superfield approach.

Now let us discuss the relation between the SU(2|1) invariant integration measures on

the supersphere and superflag. In accordance with the definitions (2.51), (2.52) and (3.30)

they are

dµ(SS) = dµ0(K2)
−1 , dµ(SF ) = dµ0∂ξ∂ξ̄(K2)

−2 . (5.43)

Using

(i) the relations

∂ξ = K
1
2
2 D

+ , ∂ξ̄ = −K
1
2
2 D̄

− , (5.44)

(ii) the fact that K2 has no dependence on ξ, ξ̄ and

(iii) that D+, D̄− have B̂ charge zero, and assuming that the integrands in the corre-

sponding integrals also have zero B̂ charge, the measures in (5.43) are related by

dµ(SF ) = dµ(SS)D̄−D+ . (5.45)
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Recalling the relations (5.22), (5.41) between the wave superfunctions of the supersphere

and superflag models, which can be concisely written as

Ψ
(N)
SS = D+Ψ

(N− 1
2
,0)

SF , D̄−Ψ
(N− 1

2
,0)

SF = D+[Ψ
(N− 1

2
,0)

SF ]∗ = 0 , (5.46)

one gets the following simple relation between the inner products on the M = 0 superflag

and supersphere:

〈Υ(N− 1
2
,0)

SF |Ψ(N− 1
2
,0)

SF 〉 =

∫
dµ(SF )[Υ

(N− 1
2
,0)

SF ]∗Ψ
(N− 1

2
,0)

SF

=

∫
dµ(SS)[Υ

(N)
SS ]∗Ψ

(N)
SS ≡ 〈Υ(N)

SS |Ψ(N)
SS 〉 . (5.47)

This is the superfield form of the relation between the supersphere and superflag norms

observed earlier at the component level.

It should be pointed out that the supersphere wave functions have zero norm with

respect to the superflag inner product (this directly stems from (5.45) and the supersphere

conditions (5.11)) but their norm is non-vanishing with respect to the supersphere inner

product, i.e. when it is computed by the formula (5.47). Also, it is easy to check that

any supersphere wave function is orthogonal to any M = 0 superflag wave function: their

superflag inner products are vanishing. Thus the operator H of (5.19) has the unique

normalizable LLL ground state with respect to the superflag inner product (recall that

H is reduced to the superflag model Hamiltonian on the set of the covariantly chiral

SU(2|1)/[U(1) × U(1)] superfields, eq. (5.24)). The supersphere wave function Ψ
(N)
0 has

zero norm, and the possibility of adding to it the LLL ground state M = 0 superflag

wave function provides the gauge invariance that is responsible for the fact that half of

the component wave functions in the superflag LLL wave superfunction at M = 0 do not

appear in its norm [2]. On the other hand, on the supersphere wave superfunctions the

same operator H (5.19) is reduced to the supersphere Hamiltonian (2.27) (see section 5.4),

with the same Ψ
(N)
0 as the LLL wave function. The latter has a non-zero norm with respect

to the inner product on the supersphere.

To summarize, at given fixed N̂ = N , the M = 0 superflag model wave functions

and the supersphere model wave functions span two different subspaces, closed under the

action of SU(2|1), in the full variety of SU(2|1)/[U(1)×U(1)] superfields. These subspaces

are orthogonal to each other with respect to the natural inner product on SU(2|1)/[U(1)×
U(1)] . The supersphere wave functions have zero norm with respect to this product,

but non-vanishing norm with respect to the inner product on the invariant submanifold

SU(2|1)/U(1|1) ⊂ SU(2|1)/[U(1) × U(1)]. The operator H is independently diagonalized

on each of these two mutually orthogonal subspaces and is reduced on them, respectively,

to the supersphere Hamiltonian (2.27) and to the M = 0 superflag Hamiltonian (5.38).

Taken at the same fixed N̂ = N , these two models are not equivalent to each other. The

N supersphere model is equivalent to the M = 0 superflag model with N ′ = N − 1
2 , and

the covariant formulation given in this section makes this equivalence manifest.
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5.3 Casimir considerations

To better understand the difference between the wave functions of the quantum supersphere

and superflag models in the manifestly covariant unified description, let us compare the

values of the Casimir operators (5.13) and (5.14) on these wave functions. The subsequent

consideration is based on the fact that all covariant derivatives defined in (5.1), (5.3)

commute with the Casimir operators C2 and C3 , so the values of the latter can be evaluated

by applying them directly to the reduced wave functions.

For the general M = 0 superflag ‘ground state’ wave functions Φ̃(Ñ,M̃) subjected to

the covariant chirality and analyticity conditions

D̄+Φ̃(Ñ,M̃) = D̄−Φ̃(Ñ,M̃) = D++Φ̃(Ñ,M̃) = 0 , (5.48)

one finds

C2 = −2M̃ [1 + 2(M̃ + Ñ)] ,

C3 = −2M̃ [1 + 2(M̃ + Ñ)][1 + 2(Ñ + 2M̃)] = [1 + 2(Ñ + 2M̃)]C2 . (5.49)

Both Casimirs vanish on the LLL state with Ñ = N, M̃ = M = 0, which corre-

sponds to the ‘atypical’ representation of SU(2|1). For the ℓ-th LL ‘ground state’ with

Ñ = N + ℓ , M̃ = − ℓ
2 the Casimirs take the values

C2 = ℓ(1 + ℓ+ 2N) , C3 = ℓ(1 + 2N)(1 + ℓ+ 2N) . (5.50)

For the general supersphere bosonic ‘ground state’ wave functions Φ(Ñ,M̃) subjected

to another sort of Grassmann analyticity conditions, and the standard bosonic analyticity

condition

D+Φ(Ñ,M̃) = D̄+Φ(Ñ,M̃) = D++Φ(Ñ,M̃) = 0 , (5.51)

one finds that

C2 = −4M̃(M̃ + Ñ) , C3 = −8M̃(Ñ + 2M̃)(Ñ + M̃) = 2(Ñ + 2M̃ )C2 . (5.52)

On the supersphere LLL state with Ñ = N, M̃ = 0, these Casimirs again vanish,

showing that this SU(2|1) multiplet is also ‘atypical’. However, for any other LL with

Ñ = N + ℓ , M̃ = − ℓ
2 the Casimirs take the values

C2 = 2ℓ

(
N +

ℓ

2

)
, C3 = 4Nℓ

(
N +

ℓ

2

)
, (5.53)

which does not coincide with (5.50) at the same fixed N . Thus in the superflag and super-

sphere cases at the same fixed N we deal with different representations of the supergroup

SU(2|1). Comparing (5.50) and (5.52) one observes that theM = 0 superflag wave function

backgrounds can be obtained from the supersphere ones by the substitution N → N + 1
2

in the latter. This correspondence just amounts to the equivalence of the N supersphere

model and the N ′ = N− 1
2 ,M = 0 superflag model, as established in the previous sections.
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Finally, let us establish the precise relation between the operator C2 (5.13) and the

superflag model Hamiltonian in the covariant formulation, i.e. with

HSF = −D−−D++ . (5.54)

Using the properties that on the general superflag model superfields (5.10)

C2 = H + (Ĵ3)
2 − (F̂ )2 = H + (N ′)2 − (N ′ + 2M)2 , (5.55)

and, according to (5.24),

H = HSF − 2M , (5.56)

we find that C2 = HSF − 2M (2M + 2N ′ + 1), in full agreement with eq. (4.27).

5.4 The supersphere model revisited

As the last topic of this section we establish the explicit relation with the consideration

of section 2. Here we make use of the notation P to denote a point on the ‘supersphere’

superspace (z, z̄, ζ, ζ̄).

After a rather tedious calculation, the Hamiltonian operator (5.19), being applied to

a general wave functions Ψ(N,0) defined by (5.8) with N ′ = N,M ′ = 0, can be cast in the

following explicit form

H = H0 −
∂

∂ξ

∂

∂ ̂̄ξ
−K2

(
ζ̄ + z̄̂̄ξ

)(
∇(N)

z̄ − ξ̄∇(N)

ζ̄

) ∂

∂ ̂̄ξ

+K−1
2 z̄ [(1 + zz̄) ξ + z̄ζ]

(
∇(N)

z̄ − ξ̄∇(N)

ζ̄

) ∂

∂ξ

−
{
z̄
[
K1 − (ζζ̄)(ξξ̄)

]
− ξζ̄

}
∇(N)

ζ̄

∂

∂ξ
. (5.57)

Here ̂̄ξ was already defined in (3.11)

̂̄ξ = ξ̄ K2 + ζ̄ z , (5.58)

and ξ̄ is assumed to be expressed through ̂̄ξ from (5.58),

ξ̄ = K−1
2

(
̂̄ξ − zζ̄

)
. (5.59)

The part H0 coincides with the Hamiltonian (2.27):

H0 = −gzz̄∇(N)
z ∇(N)

z̄ − gζζ̄∇(N)
ζ ∇(N)

ζ̄
+ gζz̄∇(N)

ζ ∇(N)
z̄ − gzζ̄∇(N)

z ∇(N)

ζ̄
, (5.60)

where the derivatives ∇(N)
B ,∇(N)

B̄
were defined in (2.28), (2.30). The Hamiltonian H0

contains no derivatives with respect to the Grassmann variables ξ, ̂̄ξ which complement

the supersphere to the superflag, so it is defined on the supersphere.

In terms of the covariant derivatives, the transition to the variable ̂̄ξ of (5.58) eliminates

the partial derivative with respect to ξ̄ from the covariant derivative D̄+. For what follows,
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it is instructive to give the expressions for the covariant derivatives D̄+,D+, D̄−,D±± in

the new basis and in application to the superfields with Ĵ3 = 2N and B̂ = 0:

D̄+ = −(K1K2)
1
2

{
∇(N)

ζ̄
−K−1

1 [(1 + zz̄)ξ + z̄ζ]
[
∇(N)

z̄ − ξ̄∇(N)

ζ̄

]}
,

D+ = K
− 1

2
2 ∂ξ , D̄− = −K

1
2
2 ∂b̄ξ ,

D++ = K
1
2
1 K2

[
∇(N)

z̄ − ξ̄∇(N)

ζ̄

]
,

D−− = K
1
2
1 K2

{[
∇(N)

z − ξ∇(N)
ζ

]
+K−1

2

[
(1 + ξ̂̄ξ )ζ̄ + z̄̂̄ξ

]
∂b̄ξ

}
. (5.61)

Here ξ̄ is assumed to be expressed as in (5.59).

Now, using these explicit expressions, one can show that the constraints (5.20) defining

the LLL wave function Ψ
(N,0)
0 amount to the following explicit set of equations:

(5.20a) :
∂

∂ξ
Ψ

(N,0)
0 =

∂

∂ ̂̄ξ
Ψ

(N,0)
0 = 0 ⇒ Ψ

(N,0)
0 = Ψ

(N,0)
0 (P ) ,

(5.20b) : ∇(N)
z̄ Ψ

(N,0)
0 = ∇(N)

ζ̄
Ψ

(N,0)
0 = 0 . (5.62)

Thus the LLL wave function in the ‘superflag-inspired’ formalism coincides with the LLL

wave function Ψ
(N)
0 (P ) defined by the constraints (2.32) of section 2: Ψ

(N,0)
0 = Ψ

(N)
0 . The

SU(2|1) transformation of Ψ
(N,0)
0 obtained by the general formula (5.9) coincides with the

transformation law (2.49). The ‘would-be’ Hamiltonian (5.57) is reduced to the supersphere

Hamiltonian H0 on Ψ
(N,0)
0 .

For the ‘ground state’ wave function Φ(N+ℓ,− ℓ

2
) corresponding to the ℓ-th LL and

satisfying the conditions (5.27), one is led to make the following redefinition

Φ(N+ℓ,− ℓ

2
) =

(
1 − ξ̂̄ξ

)ℓ

K
− ℓ

2
1 K−ℓ

2 Φ(ℓ) . (5.63)

The constraint (5.27a) then implies

∂

∂ξ
Φ(ℓ) = 0 ⇒ Φ(ℓ)(z, z̄, ζ, ζ̄,

̂̄ξ ) = ω(ℓ)(z, z̄, ζ, ζ̄) + ̂̄ξ φ(ℓ)(z, z̄, ζ, ζ̄) , (5.64)

while (5.27b) implies

∇(N)
z̄ Φ(ℓ) = ∇(N)

ζ̄
Φ(ℓ) = 0 ⇒

∇(N)
z̄ φ(ℓ) = ∇(N)

ζ̄
φ(ℓ) = 0 , ∇(N)

z̄ ω(ℓ) = ∇(N)

ζ̄
ω(ℓ) = 0 . (5.65)

The covariantly chiral bosonic and fermionic functions φ(ℓ) and ω(ℓ) can be identified

with the functions Φ
(−)
ℓ and Φ

(+)
ℓ defined by (2.34)–(2.36). Indeed, let us consider the

transformation law of (5.63) under the odd SU(2|1) transformations. The left-hand side

of (5.63) is transformed according to the general law (5.9), with N̂ = N + ℓ, M̂ = − ℓ
2 .

Then, using the coordinate transformations (2.10), (3.2) and (3.12), it is straightforward

to find the transformation law of Φ(ℓ)(z, z̄, ζ, ζ̄,
̂̄ξ ):

δΦ(ℓ) = −
[
N
(
ǫ1ζ̄ + ǭ1ζ

)
+ ℓ
(
ǭ1ζ − ǫ2̂̄ξ

)]
Φ(ℓ). (5.66)
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Recalling the transformation law of ̂̄ξ , eq. (3.12),

δ̂̄ξ = (ǭ2 + zǭ1) − (ǭ1ζ)
̂̄ξ , (5.67)

and identifying

ωℓ = Φ
(+)
ℓ , φℓ = −ℓΦ

(−)
ℓ , (5.68)

for the variations of the so defined Φ
(±)
ℓ we obtain from (5.66) just the expressions (2.49).

As for the non-reduced H-eigenfunctions Ψ
(N,0)
ℓ , Ψ̂

(N,0)
ℓ related to the ‘ground state’

ones by eqs. (5.26), (5.32), their relation to the functions Ψ
(N)
(+)ℓ(z, z̄, ζ, ζ̄), Ψ

(N)
(−)ℓ(z, z̄, ζ, ζ̄)

used in section 2 is rather non-direct. We show this relation for the simplest ℓ = 1 case. The

detailed form of the relation between the wave functions Ψ
(N,0)
1 and Φ(N+1,− 1

2
) is as follows

Ψ
(N,0)
ℓ=1 = D−−Φ(N+1,− 1

2
) =

(
1 − ξ̂̄ξ

) [
∇(N+1)

z − ξ∇(N+1)
ζ

]
Φ(1)

+K−1
2

(
ζ̄ + z̄̂̄ξ

) ∂

∂ ̂̄ξ
Φ(1) − z̄ K−1

2 Φ(1) , (5.69)

where we made use of (5.63) for ℓ = 1 . To calculate Ψ̂
(N,0)
1 , we make use of the explicit

expression for the covariant bosonic function Φ̂(N+ℓ− 1
2
,− ℓ

2
) defined in (5.29), (5.32) and

related to Φ(N+ℓ,− ℓ

2
) by (5.30). It reads

Φ̂(N+ℓ− 1
2
,− ℓ

2
) = D̄−Φ(N+ℓ,− ℓ

2
)

= −K− ℓ

2
1 K

−ℓ+ 1
2

2

∂

∂ ̂̄ξ

[(
1 − ξ̂̄ξ

)ℓ

Φ(ℓ)(z, z̄, ζ, ζ̄,
̂̄ξ )

]
. (5.70)

Then we find

Ψ̂
(N,0)
ℓ=1 = D−D̄−Φ(N+1,− 1

2
) = −

[
∇(N+1)

ζ + ̂̄ξ∇(N+1)
z

] (
ξ + ∂b̄ξ

)
Φ(1)

−K−1
2

(
ζ̄ + z̄̂̄ξ

) ∂

∂ ̂̄ξ
Φ(1) + z̄ K−1

2 Φ(1) . (5.71)

It is easy to check that, in the full agreement with the relations (5.41) and (5.42),

Ψ
(N,0)
ℓ=1 + Ψ̂

(N,0)
ℓ=1 = ∇(N+1)

z Φ
(+)
1 + ∇(N+1)

ζ Φ
(−)
1 = Ψ

(N)
1 ,

Ψ
(N)
1 = −(D+D̄−)Ψ

(N,0)
ℓ=1 = ∂ξ∂b̄ξ Ψ

(N,0)
ℓ=1 . (5.72)

In a similar way, using e.g. eq. (5.42), one can find that Ψ
(N)
ℓ = Ψ

(N,0)
ℓ + Ψ̂

(N,0)
ℓ are

expressed through Φ
(±)
ℓ just according to (2.37), (2.39). Because Ψ

(N)
ℓ satisfy the conditions

(5.11), they do not depend on ξ, ̂̄ξ and on them the operator (5.57) is reduced to H0, i.e.

to the supersphere Hamiltonian.

Note that the eigenvalue relation for ℓ = 1

H Ψ
(N,0)
ℓ=1 = (2N + 1)Ψ

(N,0)
ℓ=1 , (5.73)
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can be shown to imply the relation

H0

[
∇(N+1)

z − ξ∇(N+1)
ζ

]
Φ(1)(z, z̄, ζ, ζ̄,

̂̄ξ )

= (2N + 1)
[
∇(N+1)

z − ξ∇(N+1)
ζ

]
Φ(1)(z, z̄, ζ, ζ̄,

̂̄ξ ) . (5.74)

Since H0 contains no any derivatives with respect to ξ, ̂̄ξ , (5.74) amounts to

H0 ∇(N+1)
z Φ

(±)
ℓ=1 = (2N + 1)∇(N+1)

z Φ
(±)
ℓ=1 ,

H0 ∇(N+1)
ζ Φ

(±)
ℓ=1 = (2N + 1)∇(N+1)

ζ Φ
(±)
ℓ=1 , (5.75)

where the functions Φ
(±)
ℓ (z, z̄, ζ, ζ̄) are defined by the ̂̄ξ expansion in (5.64) and by (5.68).

Analogous relations can be obtained for ℓ > 1 . Such eigenfunctions have complicated

SU(2|1) transformation laws and presumably correspond to some composite higher super-

spin SU(2|1) multiplets.

5.5 Digression: SU(2|1)/U(2) superfields

For completeness, we comment here on another subclass of general superflag superfields:

those that are defined on the purely fermionic coset space SU(2|1)/U(2). These superfields

do not depend on the coordinates z and z̄, so they are defined by the following SU(2|1)
covariant condition

D++Φ(0,M̂) = D−−Φ(0,M̂) = 0 . (5.76)

By virtue of the last commutation relation in (5.7), these constraints are compatible only

when Ĵ3 = N̂ = 0 , in which case it is convenient to pass back to the coordinates ξ1, ξ2

defined in (3.19), and used in [2]. In these coordinates, D±± involve only the partial

derivatives ∂z and ∂z̄, so it becomes manifest that the constraints (5.76) eliminate z, z̄

dependence; i.e.

(5.76) ⇒ Φ(0,M̂) = Φ(0,M̂)(ξ1, ξ2, ξ̄1, ξ̄2) . (5.77)

It is consistent to further impose on these general SU(2|1)/U(2) superfields either the

covariant chirality conditions

D̄+Φ
(0,M̂)
(1) = D̄−Φ

(0,M̂)
(1) = 0 , (5.78)

or the covariant anti-chirality conditions

D+Φ
(0,M̂)
(2) = D−Φ

(0,M̂)
(2) = 0 . (5.79)

These (anti)chirality constraints can be solved explicitly in terms of ‘small-(anti)analytic’

superfields, ϕ(1) or ϕ(2), which depend (anti)holomorphically on half of the fermionic

coordinates; e.g.

Φ
(0,M̂)
(1) = (K1)

M̂ϕ
(0,M̂ )
(1) (ξ1, ξ2) , K1 = 1 − ξ1ξ̄1 − ξ2ξ̄2 . (5.80)

Just this kind of superfield appeared as a wave superfunction in the model of odd

SU(2|1) invariant quantum mechanics considered in [9]. There, the Lagrangian was taken
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to be the fermionic WZ term corresponding to U(1) ⊂ U(2), so the Hamiltonian is zero

and all states are described by a single chiral LLL wave superfunction. One could extend

this model by adding to the WZ term the square of purely fermionic coset Cartan forms.

In this case one should expect to have to consider higher Landau levels and the possibility

of ghosts. The planar limit of such a model was studied in [4] under the rubric ‘fermionic

Landau model’; it was found that there are just two Landau levels in this limit, and that

ghosts can be eliminated by an appropriate non-trivial choice of Hilbert space metric. We

shall not pursue this investigation further here since the SU(2|1)/U(2) Landau models

cannot be considered as ‘spherical’ super-Landau models.

6. Conclusions

This paper concludes a series of earlier investigations into SU(2|1)-invariant extensions of

the SU(2)-invariant spherical Landau models, parametrized by an integer electric charge

2N . At the classical level, these models involve additional anti-commuting variables which,

upon quantization, lead to additional quantum states in each Landau level such that each

level furnishes a representation of the supergroup SU(2|1).
The series began with a study of the lowest Landau level for a particle on the super-

sphere CP
(1|1) ∼= SU(2|1)/U(1|1), as a special case of CP

(n|m). One may take a limit in which

only the lowest Landau level survives and in this limit the model provides a ‘quantum su-

perspace’ description of the fuzzy superspheres of fuzzy degree 2N [1]. The quantum states

of the lowest Landau level all have positive norm with respect to an SU(2|1)-invariant inner

product that is naturally defined as a superspace integral, but this inner product implies

the existence of negative norm states, or ‘ghosts’, in all higher levels. This unsatisfactory

state of affairs is ameliorated in the ‘superflag’ Landau models which are based on the

coset superspace SU(2|1)/[U(1) × U(1)] and which involve an additional anti-commuting

variable; these models also have an additional parameter, M , which has no effect on the

energy levels but does have an effect on the norms of states [2]. For positive M it was

found that the first [2M ] + 1 Landau levels are ghost-free, in the natural superspace norm,

although there are still ghosts in higher Landau levels, and in all levels for M < 0.

An unusual feature of the superflag Landau models is that zero-norm states appear for

non-negative integer 2M . This is due to the existence, for non-negative M , of a fermionic

gauge symmetry of the classical theory within the phase-space ‘shell’ of energy 2M , which

has an effect on the quantum theory when 2M is a non-negative integer. This unusual

feature was investigated in detail in the context of the planar limit, which yields the ‘planar

superflag’ Landau models [3]; in particular, it was shown that zero-norm states in the

lowest Landau level of the M = 0 planar superflag Landau model ensure the equivalence

of this model with the ‘superplane’ Landau model, obtained as the planar limit of the

superspherical Landau model. The latter is very similar to a model studied earlier by

Hasebe [7], but differs in the reality conditions imposed on the anti-commuting variables.

One surprising aspect of the superplane Landau model is that the energy spectrum is

precisely that of a model of supersymmetric quantum mechanics, at least if one quantizes

in such a way that the state space is a conventional Hilbert space and not a vector su-
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perspace. This feature implies the existence of an alternative positive norm, with respect

to which the superplane Landau model is both unitary and ‘worldline’ supersymmetric

(and this is implicit in Hasebe’s work on his ‘superplane’ model) but it is not obvious

that a positive norm will preserve the original ‘internal’ supersymmetry that motivated

the model’s construction. The planar super-Landau models were ‘revisited’ in [4] with the

aim of clarifying this point. It was found that the ‘internal’ supersymmetry permits two

possible norms, such that the alternative norm is positive when M ≤ 0 ; a ‘dynamical’

combination of the two norms is needed for positivity when M > 0 . A redefinition of the

norm also changes the definition of hermitian conjugation, such that the new hermitian

conjugates are ‘shifted’ by operators that generate ‘hidden’ symmetries. Remarkably, the

non-zero ‘shift’ operators were found, for M ≤ 0, to be the odd generators of a hidden

worldline supersymmetry, spontaneously broken for M < 0 but unbroken for M = 0 .

In this paper we have carried out a similar analysis for the superspherical Landau

model, and for the associated superflag Landau models. One result of our analysis is the

proof of a quantum equivalence between the M = 0 superflag Landau model with charge

2N ′ = 2N − 1 and the superspherical Landau model with charge 2N . Classically, there is

an equivalence between these models for the same charge provided the energy is non-zero,

so the ‘quantum shift’ of the charge by one unit is presumably due to some effect associated

with zero energy configurations.

We have shown that SU(2|1) invariance of the general superflag model allows a positive

Hilbert space norm that is a ‘dynamical’ combination of the ‘naive’ superspace norm and

an ‘alternative’ norm that involves a non-trivial Hilbert space ‘metric operator’. This

alternative norm leads, by itself, to a unitary model when −2N < 2M ≤ 0, and these

are the cases that we have focused on. We have ‘solved’ these unitary models for all N :

that is to say, we have found the complete SU(2|1) representation content at each Landau

level. If it had been appreciated from the outset that SU(2|1) invariance is compatible with

unitarity then it is possible that the superspherical Landau models would have been solved

directly without the detour into the superflag Landau models, but the detour has proved

instructive; the superflag models are simpler in some respects, and the superspherical

models can be obtained by restricting to M = 0.

An interesting general issue, not investigated here, is how the semi-classical limit is

modified by a change in the Hilbert space metric. In the coherent state approach to the

classical limit, the symplectic 2-form associated to the classical dynamics clearly depends

on the Hilbert space metric. A change from a non-positive metric to a positive one cannot

be unitary, so we should expect a non-canonical transformation of the classical phase space.

However, the negative norms that we find for the ‘naive’ Hilbert space metric are associated

with the anti-commuting variables for which there is no truly classical limit, but this issue

may be of interest in the context of the quasi- hermitian [15, 16] quantum mechanics, where

it is well known that the non trivial Hilbert space metric plays a central role.

One of our objectives in this paper was to see whether the hidden worldline super-

symmetry of the unitary planar super-Landau models is inherited from some analogous

symmetry of unitary spherical super-Landau models. The introduction of a non-trivial

‘metric operator’, required to relate the alternative norm to the ‘naive’ one, implies the
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redefinition of some hermitian conjugates by ‘shift’ operators that are guaranteed by the

formalism to be new ‘hidden’ symmetry generators. There is no guarantee that such

‘hidden’ symmetries will close to yield a finite-dimensional enlarged symmetry algebra

but a closed subset can be found for −2N < 2M < 0. In these cases the manifest

SU(2|1) symmetry is a subgroup of an SU(2|2) symmetry10 with a central charge that is

linear in the ‘level operator’. The M = 0 case is similar in many respects but the lowest

Landau level is now special and this prevents any simple construction of a finite basis of

charges with level-independent (anti)commutation relations; it thus seems likely that any

symmetry group of the superspherical Landau model that contains SU(2|1) but has higher

dimension will have infinite dimension.11

Finally, one may hope that the unitary super-Landau models analyzed here and

in our previous papers will find applications. One possibility is that they may provide

an improved framework for the recently proposed [19] Landau-model approach to the

Riemann hypothesis.
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A. CP
n Landau model

In this appendix we show how the method used in section 2.4 to solve the supersphere

10The supergroup SU(2|2) also arises in the context of integrable spin chains of relevance to the planar

limit of N = 4 super-Yang-Mills theory [17], but we are not aware of any connection to our work. More

recently, SU(2|2) (actually, its some non-linear version) was identified as a ‘hidden’ symmetry of a model

of N = 2 supersymmetric Quantum Mechanics [18]; again, we are not aware of any relation to our work.
11This conclusion may be contrasted with claims made for the alternative OSp(1|2)-invariant ‘superspher-

ical’ Landau model studied in [6], but any disagreement could be a consequence of a quantum inequivalence

to the superspherical Landau model considered here.
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model can be applied to the Landau model for a particle on CP
n, which we view as a

Kähler manifold of complex dimension n with isometry group SU(n+ 1). One may choose

complex coordinates {za; a = 1, . . . , n} such that the Kähler potential is

K = log (1 + z̄ · z) ,
(
z̄ · z =

n∑

a=1

z̄aza

)
. (A.1)

The corresponding Kähler metric is

gb̄a ≡ ∂b̄∂aK = (1 + z̄ · z)−1
[
δab − (1 + z̄z)−1 zbz̄a

]
, (A.2)

where we use the notation

∂a =
∂

∂za
, ∂ā =

∂

∂z̄a
. (A.3)

The Kähler potential A for the Kähler 2-form F = dA is

A ≡ −i
(
dza∂a − dz̄b∂b̄

)
K = dzaAa + dz̄bAb̄ , (A.4)

which gives

Aa = −i z̄a

1 + z̄z
, Ab̄ = i

zb

1 + z̄z
. (A.5)

With these ingredients we may write down the classical Lagrangian for the CP
n Landau

model:

L = ża ˙̄zbgb̄a +N
(
żaAa + ˙̄zbAb̄

)
. (A.6)

The infinitesimal SU(n+ 1)/U(n) transformation of the coordinates is

δza = εa + (ε̄ · z) za , (A.7)

where {εa; a = 1, . . . , n} are n constant complex parameters, and this induces the Kähler

gauge transformation

δK = (ε̄ · z + ε · z̄) . (A.8)

This is manifestly an infinitesimal isometry of the Kähler metric and a symmetry of F .

The SU(n + 1)/U(n) variation of the Lagrangian (A.6) is a total time derivative. The

subgroup U(n) ⊂ SU(n+ 1) is realized as linear transformations of za, z̄a .

With the standard notations for the conjugate momenta, one finds that the classical

Hamiltonian is

Hclass = gab̄ (pa −NAa) (p̄b̄ −NAb̄) , (A.9)

where the inverse metric is:

gab̄ = (1 + z̄ · z)
[
δab̄ + zaz̄b

]
. (A.10)

We quantize the model via the standard replacement

pa → −i∂a , p̄b̄ → −i∂b̄ . (A.11)

– 43 –



J
H
E
P
1
0
(
2
0
0
8
)
0
6
9

Defining the quantum Hamiltonian through symmetric ordering of the covariant derivatives

one has

H = −1

2
gab̄
{
∇(N)

b̄
,∇(N)

a

}
= −gab̄∇(N)

a ∇(N)

b̄
+Nn , (A.12)

where

∇(N)
a = ∂a −N∂aK , ∇(N)

b̄
= ∂b̄ +N∂b̄K . (A.13)

These covariant derivatives have the commutation relation

[
∇(Ñ)

b̄
,∇(N)

a

]
= −

(
N + Ñ

)
gb̄a . (A.14)

Now consider, for integer 2N ≥ 0 , the sequence of wave functions

Ψ
(N)
ℓ = ∇(N+n+1)

a1
∇(N+n+3)

a2
· · · ∇(N+n+2ℓ+1)

aℓ
Φa1a2···aℓ , (A.15)

where Φa1a2···aℓ is a totally symmetric (ℓ, 0) tensor satisfying the analyticity conditions

∇(N)

b̄
Φa1a2···aℓ = 0 . (A.16)

We claim that these are eigenfunctions of H with eigenvalue

Eℓ = ℓ (2N + n+ ℓ) +Nn . (A.17)

The proof goes very much like the one outlined in section 2.4 of the text, and rests on the

identities

gad̄∂cgd̄b = − [1 + z̄ · z]−1
[
δa
b z̄

c + δa
c z̄

b
]
,

gdā∂c̄gb̄d = − [1 + z̄ · z]−1
[
δa
b z

c + δa
c z

b
]
. (A.18)

The total symmetry in the indices of ΦA1A2···Aℓ (P ) is necessary in order to obtain the

simple form of the ‘semi-covariant’ derivatives appearing in [ A.15], from the fully covariant

ones. Of course, cohomology arguments fix the value of N to be a half integer but this

can also be deduced from convergence of the SU(n+ 1)-invariant norm

||Ψ||2 =

∫ n∏

a=1

dzadz̄a e−(n+1)K |Ψ|2 . (A.19)

One could pursue this analysis for CP
(n|m) but we will not attempt this here.
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